Bright Localized Near-Infrared Emission at 1-4 AU in the AB Aurigae Disk Revealed by IOTA Closure Phases

We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.°5 ± 0.°5 is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a "disk hot spot" model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.

[1]  M. Pozzo,et al.  On the binarity of Herbig Ae/Be stars , 2005, astro-ph/0512534.

[2]  Erratum: ``The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks'' ( ApJ, 624, 832 [2005] ) , 2005 .

[3]  W. Traub,et al.  Infrared Imaging of Capella with the IOTA Closure Phase Interferometer , 2005, astro-ph/0504482.

[4]  W. Traub,et al.  Robust determination of optical path difference: fringe tracking at the infrared optical telescope array interferometer. , 2005, Applied optics.

[5]  A. Dutrey,et al.  Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk , 2005, astro-ph/0504023.

[6]  A. Isella,et al.  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[7]  W. Traub,et al.  New insights on the AU-scale circumstellar structure of FU Orionis , 2005, astro-ph/0503619.

[8]  J. D. Monnier,et al.  The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks , 2005, astro-ph/0502252.

[9]  S. Corder,et al.  AB Aurigae Resolved: Evidence for Spiral Structure , 2005, astro-ph/0502131.

[10]  R. L. Akeson,et al.  Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation , 2005, astro-ph/0501308.

[11]  D. Ciardi,et al.  Observations and Modeling of the Inner Disk Region of T Tauri Stars , 2004, astro-ph/0412438.

[12]  Fabien Malbet,et al.  Science program of the AMBER consortium , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  John D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  L. Hillenbrand,et al.  Resolved Inner Disks around Herbig Ae/Be Stars , 2004, astro-ph/0406356.

[15]  Saeko S. Hayashi,et al.  Spiral Structure in the Circumstellar Disk around AB Aurigae , 2004 .

[16]  F. P. Schloerb,et al.  First Results with the IOTA3 Imaging Interferometer: The Spectroscopic Binaries λ Virginis and WR 140 , 2004, astro-ph/0401268.

[17]  James Muzerolle,et al.  Unveiling the Inner Disk Structure of T Tauri Stars , 2003, astro-ph/0310067.

[18]  Richard J. Mathar,et al.  MIDI the 10 m instrument on the VLTI , 2003 .

[19]  J. Monnier Optical interferometry in astronomy , 2003, astro-ph/0307036.

[20]  Rafael Millan-Gabet,et al.  An integrated-optics 3-way beam combiner for IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[21]  Rafael Millan-Gabet,et al.  New beam-combination Techniques at IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[22]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[23]  J. Monnier,et al.  On the Interferometric Sizes of Young Stellar Objects , 2002, astro-ph/0207292.

[24]  Rachel Lynn Akeson,et al.  Constraints on Circumstellar Disk Parameters from Multiwavelength Observations: T Tauri and SU Aurigae , 2002 .

[25]  Fabien Malbet,et al.  The vertical structure of T Tauri accretion disks - II. Physical conditions in the disk , 2001, astro-ph/0407335.

[26]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[27]  Vincent Mannings,et al.  A reconsideration of disk properties in Herbig Ae stars , 2001 .

[28]  P. Tuthill,et al.  A dusty torus around the luminous young star LkHα101 , 2001, Nature.

[29]  W. Traub,et al.  Spatially Resolved Circumstellar Structure of Herbig Ae/Be Stars in the Near-Infrared , 2000, astro-ph/0008072.

[30]  D. Ciardi,et al.  Infrared Interferometric Observations of Young Stellar Objects , 2000, astro-ph/0006025.

[31]  Mark Clampin,et al.  Hubble Space Telescope Space Telescope Imaging Spectrograph Coronagraphic Imaging of the Herbig Ae Star AB Aurigae , 1999 .

[32]  Rafael Millan-Gabet,et al.  Sub-Astronomical Unit Structure of the Near-Infrared Emission from AB Aurigae , 1999 .

[33]  J.-M. Mariotti,et al.  Deriving object visibilities from interferograms obtained with a fiber stellar interferometer , 1997 .

[34]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[35]  T. Cornwell,et al.  A new method for making maps with unstable radio interferometers , 1981 .

[36]  R. C. Walker,et al.  Mapping radio sources with uncalibrated visibility data , 1980, Nature.

[37]  R. Jennison A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent , 1958 .