Benchmarking Image Retrieval Diversification Techniques for Social Media

Image retrieval has been an active research domain for over 30 years and historically it has focused primarily on precision as an evaluation criterion. Similar to text retrieval, where the number of indexed documents became large and many relevant documents exist, it is of high importance to highlight diversity in the search results to provide better results for the user. The Retrieving Diverse Social Images Task of the MediaEval benchmarking campaign has addressed exactly this challenge of retrieving diverse and relevant results for the past years, specifically in the social media context. Multimodal data (e.g., images, text) was made available to the participants including metadata assigned to the images, user IDs, and precomputed visual and text descriptors. Many teams have participated in the task over the years. The large number of publications employing the data and also citations of the overview articles underline the importance of this topic. In this paper, we introduce these publicly available data resources as well as the evaluation framework, and provide an in-depth analysis of the crucial aspects of social image search diversification, such as the capabilities and the evolution of existing systems. These evaluation resources will help researchers for the coming years in analyzing aspects of multimodal image retrieval and diversity of the search results.

[1]  Ali Farhadi,et al.  Image Classification and Retrieval from User-Supplied Tags , 2014, ArXiv.

[2]  Henning Müller,et al.  Div400: a social image retrieval result diversification dataset , 2014, MMSys '14.

[3]  Ellen M. Voorhees,et al.  Topic set size redux , 2009, SIGIR.

[4]  David Stutz,et al.  Neural Codes for Image Retrieval , 2015 .

[5]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[6]  Henning Müller,et al.  Result diversification in social image retrieval: a benchmarking framework , 2014, Multimedia Tools and Applications.

[7]  Henning Müller,et al.  Assessing the Scholarly Impact of ImageCLEF , 2011, CLEF.

[8]  Toshikazu Kato,et al.  Database architecture for content-based image retrieval , 1992, Electronic Imaging.

[9]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[10]  Yiannis Kompatsiaris,et al.  Improving Diversity in Image Search via Supervised Relevance Scoring , 2015, ICMR.

[11]  Santanu Chaudhury,et al.  Identifying Diverse Set of Images in Flickr , 2014, 2014 22nd International Conference on Pattern Recognition.

[12]  Urbano Nunes,et al.  Trainable classifier-fusion schemes: An application to pedestrian detection , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[13]  Gert R. G. Lanckriet,et al.  Metric Learning to Rank , 2010, ICML.

[14]  Peter G. B. Enser,et al.  Progress in Documentation Pictorial Information Retrieval , 1995, J. Documentation.

[15]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[16]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[17]  Ellen M. Voorhees,et al.  Retrieval evaluation with incomplete information , 2004, SIGIR '04.

[18]  Michael Riegler,et al.  Overview of ImageCLEFlifelog 2019: Solve My Life Puzzle and Lifelog Moment Retrieval , 2019, CLEF.

[19]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[20]  Luc Van Gool,et al.  ETH-CVL @ MediaEval 2015: Learning Objective Functions for Improved Image Retrieval , 2015, MediaEval.

[21]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[22]  Paul Clough,et al.  The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems , 2006 .

[23]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[25]  Henning Müller,et al.  Div150Cred: A social image retrieval result diversification with user tagging credibility dataset , 2015, MMSys.

[26]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[27]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[28]  Mor Naaman,et al.  Generating diverse and representative image search results for landmarks , 2008, WWW.

[29]  Alan Hanjalic,et al.  Supervised reranking for web image search , 2010, ACM Multimedia.

[30]  Sourav S. Bhowmick,et al.  Image tag clarity: in search of visual-representative tags for social images , 2009, WSM@MM.

[31]  Karl Aberer,et al.  Web Credibility: Features Exploration and Credibility Prediction , 2013, ECIR.

[32]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[33]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[34]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Bogdan Ionescu,et al.  Pseudo-relevance feedback diversification of social image retrieval results , 2017, Multimedia Tools and Applications.

[36]  Mark Sanderson,et al.  Diversity in Photo Retrieval: Overview of the ImageCLEFPhoto Task 2009 , 2009, CLEF.

[37]  S. Robertson The probability ranking principle in IR , 1997 .

[38]  Santanu Chaudhury,et al.  Search result diversification in Flickr , 2016, 2016 8th International Conference on Communication Systems and Networks (COMSNETS).

[39]  David A. Shamma,et al.  YFCC100M , 2015, Commun. ACM.

[40]  Meng Wang,et al.  Tag-Based Social Image Search: Toward Relevant and Diverse Results , 2011, Social Media Modeling and Computing.

[41]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[42]  Henning Müller,et al.  Benchmarking result diversification in social image retrieval , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[43]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[44]  Larry S. Davis,et al.  Exploiting local features from deep networks for image retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[45]  Xiaoou Tang,et al.  Texture information in run-length matrices , 1998, IEEE Trans. Image Process..

[46]  Allan Hanbury,et al.  TUW @ MediaEval 2015 Retrieving Diverse Social Images Task , 2015, MediaEval.

[47]  Andrei Bursuc,et al.  ARTEMIS @ MediaEval 2013: A Content-Based Image Clustering Method for Public Image Repositories , 2013, MediaEval.

[48]  Charles L. A. Clarke,et al.  Overview of the TREC 2012 Web Track , 2012, TREC.

[49]  Cong Yu,et al.  It takes variety to make a world: diversification in recommender systems , 2009, EDBT '09.

[50]  Xuelong Li,et al.  Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search , 2013, IEEE Transactions on Image Processing.

[51]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[52]  Omer Levy,et al.  Improving Distributional Similarity with Lessons Learned from Word Embeddings , 2015, TACL.

[53]  Thomas Roelleke,et al.  IR models: foundations and relationships , 2012, SIGIR '12.

[54]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[55]  Antonella De Angeli,et al.  A Hybrid Machine-Crowd Approach to Photo Retrieval Result Diversification , 2014, MMM.

[56]  Petia Radeva,et al.  UPC-UB-STP @ MediaEval 2015 Diversity Task: Iterative Reranking of Relevant Images , 2015, MediaEval.

[57]  Justus J. Randolph Free-Marginal Multirater Kappa (multirater K[free]): An Alternative to Fleiss' Fixed-Marginal Multirater Kappa. , 2005 .

[58]  ZhaiChengXiang Statistical Language Models for Information Retrieval A Critical Review , 2008 .

[59]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[60]  Bogdan Ionescu,et al.  Toward an Estimation of User Tagging Credibility for Social Image Retrieval , 2014, ACM Multimedia.

[61]  Henning Müller,et al.  Div150Multi: a social image retrieval result diversification dataset with multi-topic queries , 2016, MMSys.

[62]  Sabrina Tollari,et al.  UPMC at MediaEval 2016 Retrieving Diverse Social Images Task , 2016, MediaEval.

[63]  Neha Jain,et al.  Experiments in Diversifying Flickr Result Sets , 2013, MediaEval.

[64]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[65]  Hermann Ney,et al.  Jointly optimising relevance and diversity in image retrieval , 2009, CIVR '09.

[66]  Tanji Hu,et al.  Summarizing tourist destinations by mining user-generated travelogues and photos , 2011, Comput. Vis. Image Underst..

[67]  Jianzhong Li,et al.  A survey of query result diversification , 2017, Knowledge and Information Systems.

[68]  Fabrizio Silvestri,et al.  Efficient Diversification of Web Search Results , 2011, Proc. VLDB Endow..

[69]  Mónica Marrero,et al.  On the measurement of test collection reliability , 2013, SIGIR.

[70]  Ji Wan,et al.  Deep Learning for Content-Based Image Retrieval: A Comprehensive Study , 2014, ACM Multimedia.

[71]  Francesco G. B. De Natale,et al.  A hybrid approach for retrieving diverse social images of landmarks , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[72]  Virgílio A. F. Almeida,et al.  Practical Detection of Spammers and Content Promoters in Online Video Sharing Systems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[73]  Adrian Popescu CEA LIST's Participation at MediaEval 2013 Placing Task , 2013, MediaEval.

[74]  Yiannis Kompatsiaris,et al.  USEMP: Finding Diverse Images at MediaEval 2015 , 2015, MediaEval.

[75]  Zsombor Paroczi,et al.  BMEMTM at MediaEval 2013 Retrieving Diverse Social Images Task: Analysis of Text and Visual Information , 2013, MediaEval.

[76]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[77]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[78]  Katsumi Tanaka,et al.  ImageAlert: credibility analysis of text-image pairs on the web , 2011, SAC '11.

[79]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[80]  Yiannis Kompatsiaris,et al.  SocialSensor: Finding Diverse Images at MediaEval 2014 , 2014, MediaEval.

[81]  Naif Alajlan,et al.  Exploiting visual saliency for increasing diversity of image retrieval results , 2015, Multimedia Tools and Applications.

[82]  Adrian Popescu,et al.  Evaluating User Image Tagging Credibility , 2015, CLEF.

[83]  Bogdan Ionescu,et al.  Retrieving Diverse Social Images at MediaEval 2017: Challenges, Dataset and Evaluation , 2017, MediaEval.

[84]  Jun Wang,et al.  Adaptive diversification of recommendation results via latent factor portfolio , 2012, SIGIR '12.

[85]  Stevan Rudinac,et al.  Generating Visual Summaries of Geographic Areas Using Community-Contributed Images , 2013, IEEE Transactions on Multimedia.

[86]  Markus Schedl,et al.  Tailoring Music Recommendations to Users by Considering Diversity, Mainstreaminess, and Novelty , 2015, SIGIR.

[87]  Joshua R. Smith,et al.  Image retrieval evaluation , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[88]  Bogdan Ionescu,et al.  LAPI @ 2014 Retrieving Diverse Social Images Task: A Relevance Feedback Diversification Perspective , 2014, MediaEval.

[89]  Jiayu Tang,et al.  What Else Is There? Search Diversity Examined , 2009, ECIR.

[90]  H. Abdi The Kendall Rank Correlation Coefficient , 2007 .

[91]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[92]  Stéphane Marchand-Maillet,et al.  Benchmarking Image Retrieval Applications , 2004 .

[93]  Jurandy Almeida,et al.  Recod @ MediaEval 2016: Diverse Social Images Retrieval , 2016, MediaEval.

[94]  Hui Lin,et al.  Learning Mixtures of Submodular Shells with Application to Document Summarization , 2012, UAI.