Algebraic multilevel iteration methods and the best approximation to $1/x$ in the uniform norm

In this note, we provide simple convergence analysis for the algebraic multilevel iteration methods [37, 51]. We consider two examples of AMLI methods with different polynomial acceleration. The first one is based on shifted and scaled Chebyshev polynomial and the other on the polynomial of best approximation to x−1 on a finite interval [λmin , λmax ], 0 < λmin < λmax in the ‖ ·‖∞ norm. The construction of the latter polynomial is of interest by itself, and we have included a derivation of a recurrence relation for computing this polynomial. We have also derived several inequalities related to the error of best approximation, which we applied in the AMLI analysis.

[1]  Satyendra K. Tomar,et al.  Multilevel Preconditioning of Two-dimensional Elliptic Problems Discretized by a Class of Discontinuous Galerkin Methods , 2008, SIAM J. Sci. Comput..

[2]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[3]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[4]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[5]  Ludmil T. Zikatanov,et al.  Two‐sided bounds on the convergence rate of two‐level methods , 2008, Numer. Linear Algebra Appl..

[6]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[7]  Paola F. Antonietti,et al.  Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations ofElliptic Problems , 2007 .

[8]  P. Petrushev,et al.  Rational Approximation of Real Functions , 1988 .

[9]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[10]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[11]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[12]  Johannes K. Kraus,et al.  An algebraic preconditioning method for M‐matrices: linear versus non‐linear multilevel iteration , 2002, Numer. Linear Algebra Appl..

[13]  Sadegh Jokar,et al.  The best approximation of some rational functions in uniform norm , 2005 .

[14]  Manuel Kauers,et al.  SumCracker: A package for manipulating symbolic sums and related objects , 2006, J. Symb. Comput..

[15]  Radim Blaheta,et al.  Algebraic Multilevel Methods with Aggregations: An Overview , 2005, LSSC.

[16]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[17]  S. Margenov,et al.  Generalized hierarchical bases for discontinuous Galerkin discretizations of elliptic problems with highly varying coefficients , 2008 .

[18]  Owe Axelsson Stabilization of algebraic multilevel iteration methods; additive methods , 2004, Numerical Algorithms.

[19]  Yvan Notay,et al.  Aggregation-Based Algebraic Multilevel Preconditioning , 2005, SIAM J. Matrix Anal. Appl..

[20]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..

[21]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[22]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[23]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[24]  Panayot S. Vassilevski,et al.  Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..

[25]  Svetozar Margenov,et al.  On the multilevel preconditioning of Crouzeix-Raviart elliptic problems , 2008, Numer. Linear Algebra Appl..

[26]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[27]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[28]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[29]  G. Meinardus Approximation of Functions: Theory and Numerical Methods , 1967 .

[30]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[31]  Panayot S. Vassilevski,et al.  On Two Ways of Stabilizing the Hierarchical Basis Multilevel Methods , 1997, SIAM Rev..

[32]  H. Heinrich,et al.  G. Meinardus, Approximation of Functions: Theory and Numerical Methods. Translated by L. L. Schumaker. (Springer Tracts in Natural Philosophy, Volume 13) VIII + 198 S. m. 21 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 54,– , 1968 .

[33]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[34]  Blanca Ayuso de Dios,et al.  Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations , 2009, J. Sci. Comput..

[35]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[36]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[37]  Victor Eijkhout,et al.  The Nested Recursive Two-Level Factorization Method for Nine-Point Difference Matrices , 1991, SIAM J. Sci. Comput..

[38]  S. C. Brenner,et al.  Convergence of Multigrid Algorithms for Interior Penalty Methods , 2005 .

[39]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[40]  Ludmil Zikatanov,et al.  Preconditioning of Symmetric Interior Penalty Discontinuous Galerkin FEM for Elliptic Problems , 2008 .

[41]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[42]  J. Mandel,et al.  Energy optimization of algebraic multigrid bases , 1999 .

[43]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[44]  M. Kauers,et al.  Algorithms for Nonlinear Higher Order Di erence Equa-tions , 2005 .

[45]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[46]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[47]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[48]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[49]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[50]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[51]  Svetozar Margenov,et al.  Multilevel preconditioning of rotated bilinear non-conforming FEM problems , 2008, Comput. Math. Appl..

[52]  Yvan Notay,et al.  Robust parameter‐free algebraic multilevel preconditioning , 2002, Numer. Linear Algebra Appl..

[53]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[54]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .