Visualisation of Structure and Processes on Temporal Networks

The temporal dimension increases the complexity of network models but also provides more detailed information about the sequence of connections between nodes allowing a more detailed mapping of processes taking place on the network. The visualisation of such evolving structures thus permits faster identification of non-trivial activity patterns and provides insights about the mechanisms driving the dynamics on and of networks. In this chapter, we introduce key concepts and discuss visualisation methods of temporal networks based on 2D layouts where nodes correspond to horizontal lines with circles to represent active nodes and vertical edges connecting those active nodes at given times. We introduce and discuss algorithms to re-arrange nodes and edges to reduce visual clutter, layouts to highlight node and edge activity, and visualise dynamic processes on temporal networks. We illustrate the methods using real-world temporal network data of face-to-face human contacts and simulated random walk and infection dynamics.

[1]  Petter Holme,et al.  Birth and death of links control disease spreading in empirical contact networks , 2013, Scientific Reports.

[2]  Daniel W. Archambault,et al.  Can animation support the visualisation of dynamic graphs? , 2016, Inf. Sci..

[3]  Kimmo Kaski,et al.  Bursty Human Dynamics , 2017, ArXiv.

[4]  Ciro Cattuto,et al.  What's in a crowd? Analysis of face-to-face behavioral networks , 2010, Journal of theoretical biology.

[5]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[6]  Naoki Masuda,et al.  Random walk centrality for temporal networks , 2014, ArXiv.

[7]  Manuel Lima,et al.  Visual Complexity: Mapping Patterns of Information , 2011 .

[8]  Jarke J. van Wijk,et al.  Dynamic Network Visualization withExtended Massive Sequence Views , 2014, IEEE Transactions on Visualization and Computer Graphics.

[9]  Luis E C Rocha,et al.  Dynamics of Air Transport Networks: A Review from a Complex Systems Perspective , 2016, 1605.04872.

[10]  Benjamin Bach,et al.  Unfolding Dynamic Networks for Visual Exploration , 2016, IEEE Computer Graphics and Applications.

[11]  Vincent D. Blondel,et al.  Bursts of Vertex Activation and Epidemics in Evolving Networks , 2013, PLoS Comput. Biol..

[12]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[13]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[14]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[15]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[16]  John T. Stasko,et al.  The Information Mural: A Technique for Displaying and Navigating Large Information Spaces , 1998, IEEE Trans. Vis. Comput. Graph..

[17]  Petter Holme,et al.  Sampling of Temporal Networks: Methods and Biases , 2017, Physical review. E.

[18]  Claudio D. G. Linhares,et al.  DyNetVis: a system for visualization of dynamic networks , 2017, SAC.

[19]  J. Moreno Who Shall Survive: A New Approach to the Problem of Human Interrelations , 2017 .

[20]  Andrea Baronchelli,et al.  Quantifying the effect of temporal resolution on time-varying networks , 2012, Scientific Reports.

[21]  Giulio Rossetti,et al.  Community Discovery in Dynamic Networks , 2017, ACM Comput. Surv..

[22]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[23]  Arie van Deursen,et al.  Understanding Execution Traces Using Massive Sequence and Circular Bundle Views , 2007, 15th IEEE International Conference on Program Comprehension (ICPC '07).

[24]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[25]  Ton Sales Llull as Computer Scientist or Why Llull Was One of Us , 1997, ARTS.

[26]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[27]  Jean-Daniel Fekete,et al.  Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.

[28]  Fabíola S. F. Pereira,et al.  A scalable node ordering strategy based on community structure for enhanced temporal network visualization , 2019, Comput. Graph..

[29]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[30]  Chris North,et al.  Interactive Graph Layout of a Million Nodes , 2016, Informatics.

[31]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[32]  Jean-Daniel Fekete,et al.  Visualizing dynamic networks with matrix cubes , 2014, CHI.

[33]  Alain Barrat,et al.  Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys , 2015, PloS one.

[34]  Ioannis G. Tollis,et al.  A framework and algorithms for circular drawings of graphs , 2006, J. Discrete Algorithms.

[35]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[36]  Romualdo Pastor-Satorras,et al.  Random walks on temporal networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[38]  Wei Chen,et al.  EOD Edge Sampling for Visualizing Dynamic Network via Massive Sequence View , 2018, IEEE Access.

[39]  Christy Bebeau Graphicacy for Numeracy: Review of Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures by Claus O. Wilke (2019) , 2019 .

[40]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[41]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[42]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[43]  Weidong Huang,et al.  Measuring Effectiveness of Graph Visualizations: A Cognitive Load Perspective , 2009, Inf. Vis..

[44]  Ingo Scholtes,et al.  Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks , 2013, Nature Communications.

[45]  Daniel A. Keim,et al.  Visual exploration of large data sets , 2001, Commun. ACM.