Universal quantum correlation close to quantum critical phenomena

We study the ground state quantum correlation of Ising model in a transverse field (ITF) by implementing the quantum renormalization group (QRG) theory. It is shown that various quantum correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior when the size of the systems becomes large. Our results also indicate a universal behavior of the critical exponent of ITF under QRG theory that the critical exponent of different measures is identical, even when the quantities vary from entanglement measures to quantum correlation measures. This means that the two kinds of quantum correlation criterion including the entanglement-separability paradigm and the information-theoretic paradigm have some connections between them. These remarkable behaviors may have important implications on condensed matter physics because the critical exponent directly associates with the correlation length exponent.

[1]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[2]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[3]  G. Wei,et al.  Ground state phase diagrams and the tricritical behaviors of Ising metamagnet in both external longitudinal and transverse field , 2007 .

[4]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[5]  Sudha,et al.  Monogamy of quantum correlations in three-qubit pure states , 2011, 1110.3026.

[6]  Zheng-Fu Han,et al.  Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method , 2012 .

[7]  Jing-Ling Chen,et al.  Sequential state discrimination and requirement of quantum dissonance , 2013, 1307.0338.

[8]  Xin Zhang,et al.  Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model , 2016, Quantum Inf. Process..

[9]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[10]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[11]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[12]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[13]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[14]  Kang Xue,et al.  Berry phase and quantum criticality in Yang-Baxter systems , 2008, 0806.1369.

[15]  Shi-Jian Gu,et al.  Entanglement, quantum phase transition, and scaling in the XXZ chain , 2003 .

[16]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[17]  G. Rigolin,et al.  Quantum correlations in spin chains at finite temperatures and quantum phase transitions. , 2010, Physical review letters.

[18]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[19]  Jing-Ling Chen,et al.  Requirement of Dissonance in Assisted Optimal State Discrimination , 2012, Scientific Reports.

[20]  Gustavo Rigolin,et al.  Spotlighting quantum critical points via quantum correlations at finite temperatures , 2011 .

[21]  Fu-Wu Ma,et al.  Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii-Moriya interaction , 2011, 1106.0901.

[22]  R. Jafari,et al.  Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems , 2007, 0710.5843.

[23]  Liu Ye,et al.  The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model , 2013, Quantum Inf. Process..

[24]  Guo‐Feng Zhang,et al.  Quantum correlations in spin models , 2011, 1105.2866.

[25]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[26]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[27]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[28]  Shi-Jian Gu,et al.  Entanglement and quantum phase transition in the extended Hubbard model. , 2004, Physical review letters.

[29]  R. Rossignoli,et al.  Global entanglement in XXZ chains , 2006, 1112.1279.

[30]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[31]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[32]  Guo‐Feng Zhang,et al.  Measurement-induced disturbance and thermal entanglement in spin models , 2011, 1101.5512.

[33]  Liu Ye,et al.  Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction , 2014 .

[34]  A. Langari Quantum renormalization group of XYZ model in a transverse magnetic field , 2004, cond-mat/0405444.

[35]  R. Horodecki Two-spin-12 mixtures and Bell's inequalities , 1996 .

[36]  X. M. Liu,et al.  Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii-Moriya interaction , 2016, Scientific Reports.

[37]  D. Deng,et al.  Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model , 2009, 0905.1544.

[38]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[39]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[40]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[41]  Shi-Jian Gu,et al.  Universal role of correlation entropy in critical phenomena , 2006, quant-ph/0605164.

[42]  Yichen Huang,et al.  Scaling of quantum discord in spin models , 2013, 1307.6034.

[43]  Liu Ye,et al.  Negativity and quantum phase transition in the anisotropic XXZ model , 2013 .

[44]  R. Jafari,et al.  Renormalization of entanglement in the anisotropic Heisenberg ( X X Z ) model , 2007, 0711.2358.

[45]  Matematik Necessary and Sufficient Condition , 2010 .