Topological fluid mechanics of point vortex motions

Abstract Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly periodic arrays, and in doubly periodic lattices. Restricting to three vortices with zero net circulation, the symmetries are used to reduce each system to a 1 degree-of-freedom Hamiltonian. The phase portrait of the reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston–Nielsen theory is then used to analyze these isotopy classes, and in certain cases strong implications about the chaotic dynamics of the advection can be drawn. This points to an important mechanism by which the topological kinematics of large scale, two-dimensional fluid motions generate chaotic advection.

[1]  H. Aref INTEGRABLE, CHAOTIC, AND TURBULENT VORTEX MOTION IN TWO-DIMENSIONAL FLOWS , 1983 .

[2]  Andrew J. Majda,et al.  Vorticity, Turbulence, and Acoustics in Fluid Flow , 1991, SIAM Rev..

[3]  H. Aref Three-vortex motion with zero total circulation: Addendum , 1989 .

[4]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[5]  J. Marsden,et al.  Symmetry, Stability, Geometric Phases, and Mechanical Integrators (Part II) , 1991 .

[6]  M. R. Adams,et al.  The three-point vortex problem: commutative and noncommutative integrability , 1988 .

[7]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[8]  H. K. Moffatt,et al.  Helicity in Laminar and Turbulent Flow , 1992 .

[9]  Moore,et al.  Braids in classical dynamics. , 1993, Physical review letters.

[10]  Spectrum, dimension, and polymer analogies in fluid turbulence. , 1988, Physical review letters.

[11]  P. Boyland,et al.  Isotopy Stable Dynamics Relative to Compact Invariant Sets , 1999 .

[12]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[13]  V. Arnold Remarks on quasicrystallic symmetries , 1988 .

[14]  M. Handel Global shadowing of pseudo-Anosov homeomorphisms , 1985, Ergodic Theory and Dynamical Systems.

[15]  K. O'Neil On the Hamiltonian dynamics of vortex lattices , 1989 .

[16]  Norman J. Zabusky,et al.  Computational synergetics and mathematical innovation , 1981 .

[17]  M. Stremler,et al.  On the motion of three point vortices in a periodic strip , 1996, Journal of Fluid Mechanics.

[18]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[19]  T. Sarpkaya Computational Methods With Vortices—The 1988 Freeman Scholar Lecture , 1989 .

[20]  Alexandre J. Chorin,et al.  Scaling laws in the vortex lattice model of turbulence , 1988 .

[21]  Joan S. Birman,et al.  Braids : proceedings of the AMS-IMS-SIAM joint summer research conference on Artin's braid group held July 13-26, 1986 at the University of California, Santa Cruz, California , 1988 .

[22]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[23]  M. Stremler,et al.  Motion of three point vortices in a periodic parallelogram , 1999, Journal of Fluid Mechanics.

[24]  H. K. Moffatt,et al.  Topological fluid mechanics : proceedings of the IUTAM Symposium, Cambridge, UK, 13-18 August 1989 , 1990 .

[25]  Mark A. Stremler,et al.  Topological fluid mechanics of stirring , 2000, Journal of Fluid Mechanics.

[26]  David Fried The geometry of cross sections to flows , 1982 .

[27]  Vladimir I. Arnold,et al.  The asymptotic Hopf invariant and its applications , 1974 .

[28]  Renzo L. Ricca,et al.  An introduction to the geometry and topology of fluid flows , 2001 .

[29]  P. Saffman,et al.  Vortex dynamics in turbulence , 1998 .

[30]  J. Marsden Lectures on Mechanics , 1992 .

[31]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[32]  Paul H. Roberts,et al.  A Hamiltonian theory for weakly interacting vortices , 1972 .

[33]  Braids and knots in driven oscillators , 1993 .

[34]  白岩 謙一 Anosov Diffeomorphisms (力学系の総合的研究) , 1973 .

[35]  A. Chorin Turbulence and vortex stretching on a lattice , 1986 .

[36]  Jérôme E. Los,et al.  Pseudo-Anosov Maps and Invariant Train Tracks in the Disc: A Finite Algorithm , 1993 .

[37]  M. Misiurewicz,et al.  Cycles for disk homeomorphisms and thick trees , 1993 .

[38]  Mladen Bestvina,et al.  Train-tracks for surface homeomorphisms , 1995 .

[39]  P. Saffman,et al.  Dynamics of vorticity , 1981, Journal of Fluid Mechanics.

[40]  Richard Montgomery,et al.  The N-body problem, the braid group, and action-minimizing periodic solutions , 1998 .

[41]  Point vortices on a sphere: Stability of relative equilibria , 1998 .

[42]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[43]  R. Wood,et al.  Vortex Rings , 1901, Nature.

[44]  Hassan Aref,et al.  Chaotic advection in a Stokes flow , 1986 .

[45]  P. Boyland Topological methods in surface dynamics , 1994 .

[46]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[47]  Symmetry, Stability, Geometric Phases, and MechanicalIntegrators , 1991 .

[48]  Dynamical cocycles with values in the Artin braid group , 1997, Ergodic Theory and Dynamical Systems.

[49]  W. Lickorish AUTOMORPHISMS OF SURFACES AFTER NIELSEN AND THURSTON (London Mathematical Society Student Texts 9) , 1990 .

[50]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[51]  A. Gilbert Towards a realistic fast dynamo: models based on cat maps and pseudo-Anosov maps , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[52]  Steven A. Bleiler,et al.  Automorphisms of Surfaces after Nielsen and Thurston , 1988 .