A Tutorial on Planning Graph Based Reachability Heuristics

The primary revolution in automated planning in the last decade has been the very impressive scale-up in planner performance. A large part of the credit for this can be attributed squarely to the invention and deployment of powerful reachability heuristics. Most, if not all, modern reachability heuristics are based on a remarkably extensible data structure called the planning graph, which made its debut as a bit player in the success of GraphPlan, but quickly grew in prominence to occupy the center stage. Planning graphs are a cheap means to obtain informative look-ahead heuristics for search and have become ubiquitous in state-of-the-art heuristic search planners. We present the foundations of planning graph heuristics in classical planning and explain how their flexibility lets them adapt to more expressive scenarios that consider action costs, goal utility, numeric resources, time, and uncertainty.

[1]  Bernhard Nebel,et al.  Extending Planning Graphs to an ADL Subset , 1997, ECP.

[2]  Daniel Bryce,et al.  State Agnostic Planning Graphs and the Application to Belief-Space Planning , 2005, AAAI.

[3]  Terry L. Zimmerman,et al.  Using Memory to Transform Search on the Planning Graph , 2005, J. Artif. Intell. Res..

[4]  Jussi Rintanen,et al.  Distance Estimates for Planning in the Discrete Belief Space , 2004, AAAI.

[5]  Vincent Vidal,et al.  A Lookahead Strategy for Heuristic Search Planning , 2004, ICAPS.

[6]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[7]  Maria Fox,et al.  Exploiting a Graphplan Framework in Temporal Planning , 2003, ICAPS.

[8]  Håkan L. S. Younes,et al.  VHPOP: Versatile Heuristic Partial Order Planner , 2003, J. Artif. Intell. Res..

[9]  Subbarao Kambhampati,et al.  Reviving Partial Order Planning , 2001, IJCAI.

[10]  Robert Givan,et al.  Learning Heuristic Functions from Relaxed Plans , 2006, ICAPS.

[11]  Ronen I. Brafman,et al.  Conformant planning via heuristic forward search: A new approach , 2004, Artif. Intell..

[12]  Subbarao Kambhampati,et al.  Extracting Effective and Admissible State Space Heuristics from the Planning Graph , 2000, AAAI/IAAI.

[13]  Malik Ghallab,et al.  Representation and Control in IxTeT, a Temporal Planner , 1994, AIPS.

[14]  Drew McDermott,et al.  A Heuristic Estimator for Means-Ends Analysis in Planning , 1996, AIPS.

[15]  M. Fox,et al.  Efficient Implementation of the Plan Graph in STAN , 2011, J. Artif. Intell. Res..

[16]  Drew McDermott,et al.  Using Regression-Match Graphs to Control Search in Planning , 1999, Artif. Intell..

[17]  David E. Smith,et al.  Using Interaction to Compute Better Probability Estimates in Plan Graphs , 2006 .

[18]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[19]  Blai Bonet,et al.  Planning as Heuristic Search: New Results , 1999, ECP.

[20]  Daniel Bryce,et al.  Heuristic Guidance Measures for Conformant Planning , 2004, ICAPS.

[21]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[22]  Subbarao Kambhampati,et al.  Partial Satisfaction (Over-Subscription) Planning as Heuristic Search , 2004 .

[23]  Wheeler Ruml,et al.  On-line Planning and Scheduling for High-speed Manufacturing , 2005, ICAPS.

[24]  Carmel Domshlak,et al.  Fast Probabilistic Planning through Weighted Model Counting , 2006, ICAPS.

[25]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[26]  Edwin P. D. Pednault,et al.  ADL and the State-Transition Model of Action , 1994, J. Log. Comput..

[27]  Mark S. Boddy,et al.  Course of Action Generation for Cyber Security Using Classical Planning , 2005, ICAPS.

[28]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[29]  Subbarao Kambhampati,et al.  Planning with Goal Utility Dependencies , 2007, IJCAI.

[30]  Ioannis P. Vlahavas,et al.  The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning , 2001, J. Artif. Intell. Res..

[31]  Subbarao Kambhampati,et al.  Distance-Based Goal-Ordering Heuristics for Graphplan , 2000, AIPS.

[32]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[33]  Sylvie Thiébaux,et al.  Prottle: A Probabilistic Temporal Planner , 2005, AAAI.

[34]  Subbarao Kambhampati,et al.  Planning Graph Heuristics for Selecting Objectives in Over-subscription Planning Problems , 2005, ICAPS.

[35]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[36]  Daniel Bryce,et al.  Sequential Monte Carlo in Probabilistic Planning Reachability Heuristics , 2006, ICAPS.

[37]  Subbarao Kambhampati,et al.  Effective Approaches for Partial Satisfaction (Over-Subscription) Planning , 2004, AAAI.

[38]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[39]  Bernhard Nebel,et al.  On the Compilability and Expressive Power of Propositional Planning Formalisms , 2000, J. Artif. Intell. Res..

[40]  David E. Smith Choosing Objectives in Over-Subscription Planning , 2004, ICAPS.

[41]  Ivan Serina,et al.  Integrating Planning and Temporal Reasoning for Domains with Durations and Time Windows , 2005, IJCAI.

[42]  David E. Smith,et al.  Temporal Planning with Mutual Exclusion Reasoning , 1999, IJCAI.

[43]  David E. Smith,et al.  Using Correlation to Compute Better Probability Estimates in Plan Graphs , 2006 .

[44]  Daniel Bryce,et al.  Planning Graph Heuristics for Belief Space Search , 2006, J. Artif. Intell. Res..

[45]  Subbarao Kambhampati,et al.  Understanding and Extending Graphplan , 1997, ECP.

[46]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[47]  Hector Geffner,et al.  Branching Matters: Alternative Branching in Graphplan , 2003, ICAPS.

[48]  R. Brafman,et al.  Contingent Planning via Heuristic Forward Search witn Implicit Belief States , 2005, ICAPS.

[49]  Malte Helmert,et al.  A Planning Heuristic Based on Causal Graph Analysis , 2004, ICAPS.

[50]  Blai Bonet,et al.  Fifth International Planning Competition , 2006 .

[51]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[52]  Jörg Hoffmann,et al.  The Metric-FF Planning System: Translating ''Ignoring Delete Lists'' to Numeric State Variables , 2003, J. Artif. Intell. Res..

[53]  Subbarao Kambhampati,et al.  Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search , 2002, Artif. Intell..

[54]  Vincent Vidal,et al.  New Results about LCGP, a Least Committed GraphPlan , 2000, AIPS.

[55]  Eva Onaindia,et al.  A Temporal Planning System for Time-Optimal Planning , 2001, EPIA.

[56]  Subbarao Kambhampati,et al.  Over-Subscription Planning with Numeric Goals , 2005, IJCAI.

[57]  Daniel Bryce,et al.  Cost Sensitive Reachability Heuristics for Handling State Uncertainty , 2005, UAI.

[58]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[59]  Amol Dattatraya Mali,et al.  S-MEP: a planner for numeric goals , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.