A NOVEL TERM WEIGHTING SCHEME MIDF FOR TEXT CATEGORIZATION
暂无分享,去创建一个
S. Baskar | S. Kalaiarasi | S. M. A. KALAIARASI | C. DEISY | M. GOWRI | S. BASKAR | N. RAMRAJ | C. Deisy | M. Gowri | N. Ramraj
[1] Makoto Suzuki,et al. Text categorization based on the ratio of word frequency in each categories , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.
[2] Manu Konchady. Text Mining Application Programming , 2006 .
[3] Chunping Li,et al. A Novel Term Weighting Scheme for Automated Text Categorization , 2007, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007).
[4] Meng Chang Chen,et al. Using Incremental PLSI for Threshold-Resilient Online Event Analysis , 2008, IEEE Transactions on Knowledge and Data Engineering.
[5] Thorsten Joachims,et al. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization , 1997, ICML.
[6] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[7] Fabrizio Sebastiani,et al. Machine learning in automated text categorization , 2001, CSUR.
[8] Yiming Yang,et al. An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.
[9] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[10] 金田 重郎,et al. C4.5: Programs for Machine Learning (書評) , 1995 .
[11] Martin F. Porter,et al. An algorithm for suffix stripping , 1997, Program.
[12] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[13] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[14] Alberto Maria Segre,et al. Programs for Machine Learning , 1994 .
[15] Takenobu Tokunaga,et al. Text Categorization based on Weighted Inverse Document Frequency , 1994 .