Design and fabrication of high-performance diamond triple-gate field-effect transistors

The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications.

[1]  R. Balmer,et al.  Diamond as an electronic material , 2008 .

[2]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[3]  B. Lu,et al.  Tri-Gate Normally-Off GaN Power MISFET , 2012, IEEE Electron Device Letters.

[4]  D. Moran,et al.  Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz , 2012, IEEE Electron Device Letters.

[5]  Hiroshi Kawarada,et al.  C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation , 2014 .

[6]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[7]  R. Degraeve,et al.  Reliability Comparison of Triple-Gate Versus Planar SOI FETs , 2006, IEEE Transactions on Electron Devices.

[8]  C. Canali,et al.  Hole-drift velocity in natural diamond , 1981 .

[9]  Takeshi Kobayashi,et al.  Electrical Properties of Al/CaF2/i-Diamond Metal-Insulator-Semiconductor Field-Effect-Transistor Fabricated by Ultrahigh Vacuum Process , 1998 .

[10]  S. Majdi,et al.  Inversion in Metal–Oxide–Semiconductor Capacitors on Boron-Doped Diamond , 2015, IEEE Electron Device Letters.

[11]  Jiangwei Liu,et al.  Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond , 2015 .

[12]  Hiroshi Kawarada,et al.  Enhancement mode metal‐semiconductor field effect transistors using homoepitaxial diamonds , 1994 .

[13]  Chi-Woo Lee,et al.  High-Temperature Performance of Silicon Junctionless MOSFETs , 2010, IEEE Transactions on Electron Devices.

[14]  AlN as passivation for surface channel FETs on H-terminated diamond , 2010 .

[15]  W. Liao,et al.  High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure , 2012, Nanoscale Research Letters.

[16]  H. Kawarada,et al.  High-performance p-channel diamond MOSFETs with alumina gate insulator , 2007, 2007 IEEE International Electron Devices Meeting.

[17]  S. Y. Li,et al.  Palladium Ohmic contact on hydrogen-terminated single crystal diamond film , 2015 .

[18]  S. Cristoloveanu,et al.  High-Performance GaN-Based Nanochannel FinFETs With/Without AlGaN/GaN Heterostructure , 2013, IEEE Transactions on Electron Devices.

[19]  T. Nagata,et al.  Development of AlN/diamond heterojunction field effect transistors☆ , 2012 .

[20]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[21]  Masataka Imura,et al.  Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material , 2014 .

[22]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[23]  J. Biskupek,et al.  Analysis of diamond surface channel field-effect transistors with AlN passivation layers , 2013 .

[24]  Jiangwei Liu,et al.  Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric , 2014, Scientific Reports.

[25]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Jiangwei Liu,et al.  Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors , 2015 .

[27]  M. Kasu,et al.  Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2 , 2013 .

[28]  Hideki Yamamoto,et al.  Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by Al$_{2}$O$_{3}$ Passivation Layer , 2012 .

[29]  Edward J. Nowak,et al.  Maintaining the benefits of CMOS scaling when scaling bogs down , 2002, IBM J. Res. Dev..

[30]  Jiangwei Liu,et al.  Normally-off HfO2-gated diamond field effect transistors , 2013 .

[31]  G. Dewey,et al.  Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications , 2010, 2010 International Electron Devices Meeting.

[32]  H. Kawarada,et al.  High-Performance P-Channel Diamond Metal–Oxide–Semiconductor Field-Effect Transistors on H-Terminated (111) Surface , 2010 .

[33]  Yiming Li,et al.  Electrical characteristic of InGaAs multiple-gate MOSFET devices , 2015, 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

[34]  A. Aleksov,et al.  Microwave performance evaluation of diamond surface channel FETs , 2004 .