On duality gap in binary quadratic programming

We investigate in this paper the duality gap between the binary quadratic optimization problem and its semidefinite programming relaxation. We show that the duality gap can be underestimated by $${\xi_{r+1}\delta^2}$$, where δ is the distance between {−1, 1}n and certain affine subspace, and ξr+1 is the smallest positive eigenvalue of a perturbed matrix. We also establish the connection between the computation of δ and the cell enumeration of hyperplane arrangement in discrete geometry.

[1]  Panos M. Pardalos,et al.  Advances in Convex Analysis and Global Optimization , 2001 .

[2]  Nora Sleumer,et al.  Output-Sensitive Cell Enumeration in Hyperplane Arrangements , 1998, Nord. J. Comput..

[3]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[4]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[5]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[6]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[7]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[8]  Panos M. Pardalos,et al.  Topics in Semidefinite and Interior-Point Methods , 1998 .

[9]  Christophe Meyer,et al.  Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem , 2006, J. Comb. Optim..

[10]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[11]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[12]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Yong Xia,et al.  Tightening a copositive relaxation for standard quadratic optimization problems , 2013, Comput. Optim. Appl..

[15]  Panos M. Pardalos,et al.  Construction of test problems in quadratic bivalent programming , 1991, TOMS.

[16]  Imad M. Jaimoukha,et al.  On the gap between the quadratic integer programming problem and its semidefinite relaxation , 2006, Math. Program..

[17]  P. Chardaire,et al.  A Decomposition Method for Quadratic Zero-One Programming , 1995 .

[18]  Alain Billionnet,et al.  Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..

[19]  Erich Steiner,et al.  A polynomial case of unconstrained zero-one quadratic optimization , 2001, Math. Program..

[20]  C. Lemaréchal,et al.  SDP Relaxations in Combinatorial Optimization from a Lagrangian Viewpoint , 2001 .

[21]  Panos M. Pardalos,et al.  Lower Bound Improvement and Forcing Rule for Quadratic Binary Programming , 2006, Comput. Optim. Appl..

[22]  Walid Ben-Ameur,et al.  Spectral bounds for the maximum cut problem , 2008, Networks.

[23]  S. Fang,et al.  Canonical dual approach to solving 0-1 quadratic programming problems , 2008 .

[24]  Yong Xia,et al.  Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming , 2010, Math. Oper. Res..

[25]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[26]  Srimat T. Chakradhar,et al.  A solvable class of quadratic 0-1 programming , 1992, Discret. Appl. Math..

[27]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[28]  Altannar Chinchuluun Optimization and optimal control : theory and applications , 2010 .

[29]  O. SIAMJ. GLOBAL OPTIMALITY CONDITIONS FOR QUADRATIC OPTIMIZATION PROBLEMS WITH BINARY CONSTRAINTS , 2000 .

[30]  Henry Wolkowicz,et al.  Convex Relaxations of (0, 1)-Quadratic Programming , 1995, Math. Oper. Res..

[31]  P. Pardalos,et al.  Novel Approaches to Hard Discrete Optimization , 2003 .

[32]  Xiaoling Sun,et al.  Polynomially Solvable Cases of Binary Quadratic Programs , 2010 .

[33]  Hanif D. Sherali,et al.  Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality , 2009, J. Glob. Optim..

[34]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[35]  S. J. Li,et al.  On the stability of a dual weak vector variational inequality problem , 2008 .

[36]  Henry Wolkowicz,et al.  A Recipe for Semidefinite Relaxation for , 1995 .