Numerical Computation of the Schwarz-Christoffel Transformation for Multiply Connected Domains

We report on recent progress in the computation of Schwarz-Christoffel maps from bounded or unbounded circular domains to conformally equivalent bounded or unbounded multiply connected polygonal domains. The form of the transformation is given in terms of an integral of an infinite product depending on unknown parameters, namely, the prevertices and the centers and radii of the circles. A system of nonlinear equations, which forces the geometry of the given polygonal domain to be correct under the mapping function, is formulated for the unknown parameters and solved by a continuation method. A transformation of the constrained parameters to an unconstrained set of variables is crucial to the effective solution of the system. Several numerical examples are given. The approach here proves to be very robust.

[1]  L. Trefethen Numerical computation of the Schwarz-Christoffel transformation , 1979 .

[2]  Darren Crowdy,et al.  Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  A. Elcrat,et al.  Schwarz-Christoffel mapping of multiply connected domains , 2004 .

[4]  Darren Crowdy,et al.  Geometric function theory: a modern view of a classical subject , 2008 .

[5]  Thomas K. DeLillo,et al.  Schwarz-Christoffel Mapping of Bounded, Multiply Connected Domains , 2006 .

[6]  A.P.J. van Deursen,et al.  Schwarz-Christoffel analysis of cable conduits with noncontacting cover , 2001 .

[7]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[8]  Lehel Banjai,et al.  Revisiting the Crowding Phenomenon in Schwarz-Christoffel Mapping , 2008, SIAM J. Sci. Comput..

[9]  Y. A. Antipov,et al.  Motion of a Yawed Supercavitating Wedge Beneath a Free Surface , 2009, SIAM J. Appl. Math..

[10]  A DriscollTobin Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996 .

[11]  THOMAS K. DELILLO,et al.  SLIT MAPS AND SCHWARZ-CHRISTOFFEL MAPS FOR MULTIPLY CONNECTED DOMAINS , 2010 .

[12]  Darren Crowdy,et al.  The Schottky-Klein Prime Function on the Schottky Double of Planar Domains , 2011 .

[13]  Chenglie Hu,et al.  Algorithm 785: a software package for computing Schwarz-Christoffel conformal transformation for doubly connected polygonal regions , 1998, TOMS.

[14]  Lloyd N. Trefethen,et al.  A Multipole Method for Schwarz-Christoffel Mapping of Polygons with Thousands of Sides , 2003, SIAM J. Sci. Comput..

[15]  Leslie Greengard,et al.  A Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced Conducting Cylinders , 1998, SIAM J. Appl. Math..

[16]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[17]  Tobin A. Driscoll,et al.  Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Tobin A. Driscoll,et al.  Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains , 2006 .

[19]  Darren Crowdy,et al.  Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains , 2007 .

[20]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[21]  Thomas K. DeLillo,et al.  A simplified Fornberg-like method for the conformal mapping of multiply connected regions-Comparisons and crowding , 2007 .

[22]  A.P.J. van Deursen,et al.  Reduction of inductive common-mode coupling of printed circuit boards by nearby U-shaped metal cabinet panel , 2005, IEEE Transactions on Electromagnetic Compatibility.

[23]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[24]  Nicholas Hale,et al.  Conformal Maps to Multiply Slit Domains and Applications , 2009, SIAM J. Sci. Comput..

[25]  Darren Crowdy,et al.  The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.