Properties and Origin of Galaxy Velocity Bias in the Illustris Simulation

We use hydrodynamical galaxy formation simulations from the Illustris suite to study the origin and properties of galaxy velocity bias, i.e., the difference between the velocity distributions of galaxies and dark matter inside halos. We find that galaxy velocity bias decreases with increasing ratio of galaxy stellar mass to host halo mass. In general, central galaxies are not at rest with respect to dark matter halos or the core of halos, with a velocity dispersion above 0.04 times that of the dark matter. The central galaxy velocity bias is found to be mostly caused by close interactions between the central and satellite galaxies. For satellite galaxies, the velocity bias is related to their dynamical and tidal evolution history after being accreted onto the host halos. It depends on the time after the accretion and their distances from the halo centers, with massive satellites generally moving more slowly than the dark matter. The results are in broad agreement with those inferred from modeling small-scale redshift-space galaxy clustering data, and the study can help improve models of redshift-space galaxy clustering.

[1]  C. Frenk,et al.  The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation , 2016, 1603.03328.

[2]  E. Rykoff,et al.  Galaxy cluster mass estimation from stacked spectroscopic analysis , 2016, 1601.05773.

[3]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees , 2015, 1512.00910.

[4]  J. Comparat,et al.  Modelling galaxy clustering: halo occupation distribution versus subhalo matching. , 2015, Monthly notices of the Royal Astronomical Society.

[5]  Zheng Zheng,et al.  Accurate and efficient halo-based galaxy clustering modelling with simulations , 2015, 1506.07523.

[6]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[7]  J. Comparat,et al.  Redshift-Space Clustering of SDSS Galaxies — Luminosity Dependence, Halo Occupation Distribution, and Velocity Bias , 2015, 1505.07861.

[8]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[9]  C. McBride,et al.  Galaxy morphology and star formation in the Illustris Simulation at z = 0 , 2015, 1502.07747.

[10]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[11]  R. Nichol,et al.  Modelling the redshift-space three-point correlation function in SDSS-III , 2014, 1409.7389.

[12]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[13]  K. Dawson,et al.  Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.

[14]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[15]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[16]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[17]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[18]  Liverpool John Moores University,et al.  The impact of galaxy formation on the total mass, mass profile and abundance of haloes , 2014, 1402.4461.

[19]  T. Davis,et al.  Are peculiar velocity surveys competitive as a cosmological probe , 2013, 1312.1022.

[20]  Astrophysics,et al.  The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter , 2013, 1310.7571.

[21]  R. Wechsler,et al.  Virial scaling of galaxies in clusters: bright to faint is cool to hot , 2013, 1307.0011.

[22]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[23]  C. Frenk,et al.  The abundance of (not just) dark matter haloes , 2012, 1206.6495.

[24]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[25]  Cheng Li,et al.  INTERNAL KINEMATICS OF GROUPS OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2012, 1206.3566.

[26]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[27]  H. Mo,et al.  EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.

[28]  F. Fontanot,et al.  Are Brightest Halo Galaxies Central Galaxies , 2010, 1001.4533.

[29]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[30]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[31]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[32]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[33]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[34]  S. Colombi,et al.  Baryon Dynamics, Dark Matter Substructure, and Galaxies , 2006, astro-ph/0604393.

[35]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[36]  Cheng Li,et al.  A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering , 2007, 0707.2628.

[37]  J. Tinker Redshift-space distortions with the halo occupation distribution – II. Analytic model , 2006, astro-ph/0604217.

[38]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[39]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[40]  Cheng Li,et al.  The phase-space parameters of the brightest halo galaxies , 2005, astro-ph/0502466.

[41]  Y. Jing,et al.  Spatial and Dynamical Biases in Velocity Statistics of Galaxies , 2003, astro-ph/0303053.

[42]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[43]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[44]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[45]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[46]  J. Willick,et al.  The density and peculiar velocity fields of nearby galaxies , 1995, astro-ph/9502079.

[47]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[48]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[49]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[50]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[51]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[52]  A. Eddington,et al.  Principles of Stellar Dynamics , 1943, Nature.