Properties and Origin of Galaxy Velocity Bias in the Illustris Simulation
暂无分享,去创建一个
Hong Guo | I. Zehavi | Zheng Zheng | Jiani Ye
[1] C. Frenk,et al. The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation , 2016, 1603.03328.
[2] E. Rykoff,et al. Galaxy cluster mass estimation from stacked spectroscopic analysis , 2016, 1601.05773.
[3] David N. Spergel,et al. The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees , 2015, 1512.00910.
[4] J. Comparat,et al. Modelling galaxy clustering: halo occupation distribution versus subhalo matching. , 2015, Monthly notices of the Royal Astronomical Society.
[5] Zheng Zheng,et al. Accurate and efficient halo-based galaxy clustering modelling with simulations , 2015, 1506.07523.
[6] Klaus Dolag,et al. Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.
[7] J. Comparat,et al. Redshift-Space Clustering of SDSS Galaxies — Luminosity Dependence, Halo Occupation Distribution, and Velocity Bias , 2015, 1505.07861.
[8] Gregory F. Snyder,et al. The illustris simulation: Public data release , 2015, Astron. Comput..
[9] C. McBride,et al. Galaxy morphology and star formation in the Illustris Simulation at z = 0 , 2015, 1502.07747.
[10] Annalisa Pillepich,et al. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.
[11] R. Nichol,et al. Modelling the redshift-space three-point correlation function in SDSS-III , 2014, 1409.7389.
[12] S. White,et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.
[13] K. Dawson,et al. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.
[14] V. Springel,et al. Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.
[15] V. Springel,et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.
[16] V. Springel,et al. Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.
[17] Alexie Leauthaud,et al. A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.
[18] Liverpool John Moores University,et al. The impact of galaxy formation on the total mass, mass profile and abundance of haloes , 2014, 1402.4461.
[19] T. Davis,et al. Are peculiar velocity surveys competitive as a cosmological probe , 2013, 1312.1022.
[20] Astrophysics,et al. The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter , 2013, 1310.7571.
[21] R. Wechsler,et al. Virial scaling of galaxies in clusters: bright to faint is cool to hot , 2013, 1307.0011.
[22] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[23] C. Frenk,et al. The abundance of (not just) dark matter haloes , 2012, 1206.6495.
[24] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[25] Cheng Li,et al. INTERNAL KINEMATICS OF GROUPS OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2012, 1206.3566.
[26] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[27] H. Mo,et al. EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.
[28] F. Fontanot,et al. Are Brightest Halo Galaxies Central Galaxies , 2010, 1001.4533.
[29] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.
[30] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[31] James Binney,et al. Galactic Dynamics: Second Edition , 2008 .
[32] V. Springel,et al. Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.
[33] Martin White,et al. Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.
[34] S. Colombi,et al. Baryon Dynamics, Dark Matter Substructure, and Galaxies , 2006, astro-ph/0604393.
[35] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[36] Cheng Li,et al. A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering , 2007, 0707.2628.
[37] J. Tinker. Redshift-space distortions with the halo occupation distribution – II. Analytic model , 2006, astro-ph/0604217.
[38] Douglas H. Rudd,et al. The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .
[39] V. Springel,et al. The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.
[40] Cheng Li,et al. The phase-space parameters of the brightest halo galaxies , 2005, astro-ph/0502466.
[41] Y. Jing,et al. Spatial and Dynamical Biases in Velocity Statistics of Galaxies , 2003, astro-ph/0303053.
[42] C. Baugh,et al. The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.
[43] R. Nichol,et al. The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.
[44] D. Weinberg,et al. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.
[45] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[46] J. Willick,et al. The density and peculiar velocity fields of nearby galaxies , 1995, astro-ph/9502079.
[47] A. Hamilton. Measuring Omega and the real correlation function from the redshift correlation function , 1992 .
[48] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[49] A. Szalay,et al. The statistics of peaks of Gaussian random fields , 1986 .
[50] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[51] N. Kaiser. On the spatial correlations of Abell clusters , 1984 .
[52] A. Eddington,et al. Principles of Stellar Dynamics , 1943, Nature.