Encoding asymmetry within neural circuits

Genetic and environmental factors control morphological and functional differences between the two sides of the nervous system. Neural asymmetries are proposed to have important roles in circuit physiology, cognition and species-specific behaviours. We propose two fundamentally different mechanisms for encoding left–right asymmetry in neural circuits. In the first, asymmetric circuits share common components; in the second, there are unique unilateral structures. Research in both vertebrates and invertebrates is helping to reveal the mechanisms underlying the development of neural lateralization, but less is known about the function of circuit asymmetries. Technical advances in the coming years are likely to revolutionize our understanding of left–right asymmetry in the nervous system.

[1]  K. Ohtomo,et al.  White matter asymmetry in healthy individuals: a diffusion tensor imaging study using tract-based spatial statistics , 2011, Neuroscience.

[2]  Timothy Verstynen,et al.  Early life environment modulates ‘handedness’ in rats , 2002, Behavioural Brain Research.

[3]  A. Bouma,et al.  Epigenesis of behavioural lateralization in humans and other animals , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Emily J. Bain,et al.  Light and melatonin schedule neuronal differentiation in the habenular nuclei. , 2011, Developmental biology.

[5]  K. Amunts,et al.  Interhemispheric asymmetry of the human motor cortex related to handedness and gender , 2000, Neuropsychologia.

[6]  Ryosuke Kawakami,et al.  Asymmetrical Allocation of NMDA Receptor ε2 Subunits in Hippocampal Circuitry , 2003, Science.

[7]  Scale-eating cichlids: from hand(ed) to mouth , 2010, Journal of biology.

[8]  L. Rogers,et al.  Light experience and the development of behavioural lateralization in chicks III. Learning to distinguish pebbles from grains , 2007, Behavioural Brain Research.

[9]  Paul M. Thompson,et al.  Gender differences in the left inferior frontal gyrus in normal children , 2004, NeuroImage.

[10]  Three Ways to Make Two Sides: Genetic Models of Asymmetric Nervous System Development , 2007, Neuron.

[11]  M. Concha,et al.  11-P010 Zebrafish and medaka: Model organisms for a comparative developmental approach of brain asymmetry , 2009, Mechanisms of Development.

[12]  HANDEDNESS AND ASYMMETRY IN SCALE‐EATING CICHLIDS: ANTISYMMETRIES OF DIFFERENT STRENGTH , 2010, Evolution; international journal of organic evolution.

[13]  Stephen W. Wilson,et al.  A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain , 2000, Neuron.

[14]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[15]  L. Rogers Development and function of lateralization in the avian brain , 2008, Brain Research Bulletin.

[16]  G. Vallortigara,et al.  Advantages of having a lateralized brain , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  M. Stensmyr,et al.  Pheromones: Fish Fear Factor , 2012, Current Biology.

[18]  O. Güntürkün,et al.  Evidence for physiological asymmetries in the intertectal connections of the pigeon (Columba livia) and their potential role in brain lateralisation , 2000, Brain Research.

[19]  O. Hobert,et al.  Left–right asymmetry in the nervous system: the Caenorhabditis elegans model , 2002, Nature Reviews Neuroscience.

[20]  Frank Kreuder,et al.  Hemispheric and gender related differences in the midcingulum bundle: A DTI study , 2009, Human brain mapping.

[21]  C. Govind,et al.  Neural asymmetry in male fiddler crabs , 1983, Brain Research.

[22]  J. Connor,et al.  An epigenetic induction of a right‐shift in hippocampal asymmetry: Selectivity for short‐ and long‐term potentiation but not post‐tetanic potentiation , 2008, Hippocampus.

[23]  Stephen W. Wilson,et al.  Breaking symmetry: The zebrafish as a model for understanding left‐right asymmetry in the developing brain , 2012, Developmental neurobiology.

[24]  Isabelle S. Häberling,et al.  Cerebral Asymmetries: Complementary and Independent Processes , 2010, PloS one.

[25]  G. Vallortigara,et al.  survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization , 2005, Behavioral and Brain Sciences.

[26]  M. Concha,et al.  Evolutionary Plasticity of Habenular Asymmetry with a Conserved Efferent Connectivity Pattern , 2012, PloS one.

[27]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[28]  Masahiko Watanabe,et al.  Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors , 2008, Proceedings of the National Academy of Sciences.

[29]  Thomas A. Stewart,et al.  Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids , 2010, BMC Biology.

[30]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[31]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Rogers,et al.  Light-dependent development of asymmetry in the ipsilateral and contralateral thalamofugal visual projections of the chick , 2003, Neuroscience Letters.

[33]  C. Weiller,et al.  Dynamics of language reorganization after stroke. , 2006, Brain : a journal of neurology.

[34]  P. Hurd,et al.  The relationship between growth, brain asymmetry and behavioural lateralization in a cichlid fish , 2009, Behavioural Brain Research.

[35]  Stephen W. Wilson,et al.  Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality , 2003, Neuron.

[36]  H. Yamasue,et al.  Gray and white matter asymmetries in healthy individuals aged 21–29 years: A voxel‐based morphometry and diffusion tensor imaging study , 2011, Human brain mapping.

[37]  Douglas W. Jones,et al.  Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl's gyrus and the planum temporale. , 1994, Cerebral cortex.

[38]  M. Halpern,et al.  The parapineal mediates left-right asymmetry in the zebrafish diencephalon , 2003, Development.

[39]  B. McEwen,et al.  Modification of Social Memory, Hypothalamic-Pituitary-Adrenal Axis, and Brain Asymmetry by Neonatal Novelty Exposure , 2003, The Journal of Neuroscience.

[40]  K Zilles,et al.  Human primary auditory cortex in women and men , 2001, Neuroreport.

[41]  V H Denenberg,et al.  Infantile stimulation induces brain lateralization in rats. , 1978, Science.

[42]  O. Güntürkün,et al.  Light experience induces differential asymmetry pattern of GABA- and parvalbumin-positive cells in the pigeon's visual midbrain , 2003, Journal of Chemical Neuroanatomy.

[43]  Thomas Preat,et al.  Brain asymmetry and long-term memory. Nature , 2004 .

[44]  L. Rogers,et al.  Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway , 2005, Behavioural Brain Research.

[45]  M. Just,et al.  Plasticity of language-related brain function during recovery from stroke. , 1999, Stroke.

[46]  M. Hausmann,et al.  Sex Hormonal Effects on Hemispheric Asymmetry and Interhemispheric Interaction , 2010 .

[47]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[48]  J. Livet,et al.  Generating and imaging multicolor Brainbow mice. , 2011, Cold Spring Harbor protocols.

[49]  J. Montes,et al.  Functional cerebral asymmetry in affective disorders: new facts contributed by transcranial magnetic stimulation. , 2001, Journal of affective disorders.

[50]  L. Rogers Light input and the reversal of functional lateralization in the chicken brain , 1990, Behavioural Brain Research.

[51]  A. Eggleston,et al.  A tale of two halves , 2006, Nature Structural &Molecular Biology.

[52]  M. Eckert,et al.  Asymmetry and Dyslexia , 2008, Developmental neuropsychology.

[53]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[54]  M. Dadda,et al.  Early differences in epithalamic left–right asymmetry influence lateralization and personality of adult zebrafish , 2010, Behavioural Brain Research.

[55]  Kenneth Hugdahl,et al.  The two halves of the brain : information processing in the cerebral hemispheres , 2010 .

[56]  S. Higashijima,et al.  From the Olfactory Bulb to Higher Brain Centers: Genetic Visualization of Secondary Olfactory Pathways in Zebrafish , 2009, The Journal of Neuroscience.

[57]  D. Linden,et al.  Cerebral Asymmetry in Schizophrenia , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[58]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[59]  L. Rogers,et al.  Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks , 2005, Behavioural Brain Research.

[60]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[61]  Richard J. Poole,et al.  A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans , 2011, PLoS genetics.

[62]  Shun Yamaguchi,et al.  Right‐hemispheric dominance of spatial memory in split‐brain mice , 2012, Hippocampus.

[63]  H. Okamoto,et al.  Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety , 2012, Developmental neurobiology.

[64]  Marco Dadda,et al.  The costs of hemispheric specialization in a fish , 2009, Proceedings of the Royal Society B: Biological Sciences.

[65]  Richard J. Davidson,et al.  The asymmetrical brain , 2003 .

[66]  H. van der Loos,et al.  Direction of handedness linked to hereditary asymmetry of a sensory system. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Ying-Fang Sun,et al.  Brain imaging findings in dyslexia. , 2010, Pediatrics and neonatology.

[68]  D. Ehrlich,et al.  Sex-dependent structural asymmetry of the medial habenular nucleus of the chicken brain , 2004, Cell and Tissue Research.

[69]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[70]  Stephen W. Wilson,et al.  Brain asymmetry is encoded at the level of axon terminal morphology , 2008, Neural Development.

[71]  Cathleen Teh,et al.  The Habenula Prevents Helpless Behavior in Larval Zebrafish , 2010, Current Biology.

[72]  O. Güntürkün,et al.  Asymmetry pays: visual lateralization improves discrimination success in pigeons , 2000, Current Biology.

[73]  John S. Duncan,et al.  Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study , 2006, NeuroImage.

[74]  O. Güntürkün,et al.  Hemispheric Asymmetries: The Comparative View , 2012, Front. Psychology.

[75]  H. Okamoto,et al.  Phylogeny and Ontogeny of the Habenular Structure , 2011, Front. Neurosci..

[76]  Ryosuke Kawakami,et al.  Right Isomerism of the Brain in Inversus Viscerum Mutant Mice , 2008, PloS one.

[77]  M. Halpern,et al.  Determining the function of zebrafish epithalamic asymmetry , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  Richard R. Gaillardetz,et al.  Making the Connections , 2002 .

[79]  F. Volkmar,et al.  Structural Neural Phenotype of Autism: Preliminary Evidence from a Diffusion Tensor Imaging Study Using Tract-Based Spatial Statistics , 2011, American Journal of Neuroradiology.

[80]  L. Rogers,et al.  Light experience and lateralization of the two visual pathways in the chick , 1999, Behavioural Brain Research.

[81]  Katrin Amunts,et al.  Gender-Specific Left–Right Asymmetries in Human Visual Cortex , 2007, The Journal of Neuroscience.

[82]  Variants Coad-Yourdon Shlaer-Mellor Advantages and Disadvantages , 1917, The Hospital.

[83]  Karl Deisseroth,et al.  Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity , 2011, Nature Neuroscience.

[84]  M. Concha,et al.  Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[85]  L. Rogers,et al.  Light experience and the development of behavioural lateralisation in chicks II. Choice of familiar versus unfamiliar model social partner , 2004, Behavioural Brain Research.

[86]  Stephen W. Wilson,et al.  fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses , 2005, Current Biology.

[87]  M. Hendricks,et al.  Asymmetric innervation of the habenula in zebrafish , 2007, The Journal of comparative neurology.

[88]  M. Concha,et al.  Mechanisms of directional asymmetry in the zebrafish epithalamus. , 2009, Seminars in cell & developmental biology.

[89]  Michael S. Gazzaniga,et al.  Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual Differences , 2010, Journal of Cognitive Neuroscience.

[90]  A. Rajput,et al.  Anomalies of asymmetry of clinical signs in parkinsonism , 2004, Movement disorders : official journal of the Movement Disorder Society.

[91]  L. Rogers,et al.  Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure , 2004, Experimental Brain Research.

[92]  M. Hori,et al.  Frequency-Dependent Natural Selection in the Handedness of Scale-Eating Cichlid Fish , 1993, Science.

[93]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[94]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.

[95]  Frithjof Kruggel,et al.  Gender and age effects in structural brain asymmetry as measured by MRI texture analysis , 2003, NeuroImage.

[96]  M. Corballis The evolution and genetics of cerebral asymmetry , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[97]  L. Rogers Light experience and asymmetry of brain function in chickens , 1982, Nature.

[98]  Stephen W. Wilson,et al.  Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei , 2009, Development.

[99]  T. Verstynen,et al.  Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat , 2001, Neuroreport.

[100]  J. Kanwal,et al.  Right–left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats , 2012, The European journal of neuroscience.

[101]  O. Güntürkün How asymmetry in animals starts , 2005, European Review.

[102]  A. Toga,et al.  Hemispheric asymmetries in cortical thickness. , 2006, Cerebral cortex.

[103]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[104]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[105]  Oliver Hobert,et al.  Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans , 2006, Current Biology.

[106]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[107]  O. Güntürkün,et al.  Lateralized reward‐related visual discrimination in the avian entopallium , 2012, The European journal of neuroscience.

[108]  Y. Kuan,et al.  Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target , 2005, Development.

[109]  M. Gazzaniga Forty-five years of split-brain research and still going strong , 2005, Nature Reviews Neuroscience.

[110]  Jung-Lung Hsu,et al.  Gender differences and age-related white matter changes of the human brain: A diffusion tensor imaging study , 2008, NeuroImage.

[111]  Shigeru Watanabe,et al.  Left−Right Asymmetry Defect in the Hippocampal Circuitry Impairs Spatial Learning and Working Memory in iv Mice , 2010, PloS one.

[112]  Svetlana Levitan,et al.  A Computational Model of Lateralization and Asymmetries in Cortical Maps , 2000, Neural Computation.

[113]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[114]  J. van Pelt,et al.  Sex-difference and left-right asymmetries in the prefrontal cortex during postnatal development in the rat. , 1984, Brain research.

[115]  J Levy,et al.  THE MAMMALIAN BRAIN AND THE ADAPTIVE ADVANTAGE OF CEREBRAL ASYMMETRY , 1977, Annals of the New York Academy of Sciences.

[116]  S. Lockery,et al.  Developmental control of lateralized neuron size in the nematode Caenorhabditis elegans , 2010, Neural Development.

[117]  S. Budaev,et al.  Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[118]  C. Govind,et al.  Differential Reflex Activity Determines Claw and Closer Muscle Asymmetry in Developing Lobsters , 1986, Science.

[119]  T. Dooren,et al.  HANDEDNESS AND ASYMMETRY IN SCALE-EATING CICHLIDS: ANTISYMMETRIES OF DIFFERENT STRENGTH , 2010 .

[120]  M. Diamond,et al.  Age-related morphologic differences in the rat cerebral cortex and hippocampus: Male-female; right-left , 1983, Experimental Neurology.

[121]  L. Rogers,et al.  Modulation of the development of light-initiated asymmetry in chick thalamofugal visual projections by oestradiol , 2004, Experimental Brain Research.

[122]  L. Rogers Evolution of Hemispheric Specialization: Advantages and Disadvantages , 2000, Brain and Language.

[123]  W. Chapple CENTRAL AND PERIPHERAL ORIGINS OF ASYMMETRY IN THE ABDOMINAL MOTOR SYSTEM OF THE HERMIT CRAB * , 1977 .

[124]  Stephen W. Wilson,et al.  Asymmetry in the epithalamus of vertebrates , 2001, Journal of anatomy.

[125]  Jon Bardin,et al.  Neuroscience: Making connections , 2012, Nature.

[126]  M. Manns,et al.  The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation , 2012, Nature Communications.

[127]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[128]  Tomomi Sato,et al.  Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. , 2007, Developmental cell.

[129]  C. N. Macrae,et al.  Mike or me? Self-recognition in a split-brain patient , 2002, Nature Neuroscience.

[130]  C. Govind Claw asymmetry in lobsters: case study in developmental neuroethology. , 1992, Journal of neurobiology.

[131]  L. Rogers,et al.  Testosterone: A role in the development of brain asymmetry in the chick , 1992, Neuroscience Letters.

[132]  A. Thiel,et al.  A proposed regional hierarchy in recovery of post-stroke aphasia , 2006, Brain and Language.

[133]  Stephen W. Wilson,et al.  Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus , 2005, Current Biology.

[134]  David B. Dusenbery,et al.  Responses of the nematodeCaenorhabditis elegans to controlled chemical stimulation , 1980, Journal of comparative physiology.

[135]  R. Andrew,et al.  Lateralization of a food search task in the domestic chick. , 1986, Behavioral and neural biology.

[136]  B. Hellmann,et al.  Asymmetries of representation in the visual system of pigeons , 1998, Neuroreport.

[137]  M. Gazzaniga,et al.  Modular organization of cognitive systems masked by interhemispheric integration. , 1998, Science.

[138]  Stephen W. Wilson,et al.  An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry , 2009, Neuron.

[139]  T. Murphy,et al.  In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas , 2012, Front. Neural Circuits.

[140]  Andrea J. Gerten,et al.  COMPARATIVE VIEW , 2009 .

[141]  Asset efficiency: why it matters and how to measure it. , 2010, Healthcare financial management : journal of the Healthcare Financial Management Association.

[142]  S. Maier,et al.  The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress , 2001, Brain Research.

[143]  O. Güntürkün Morphological asymmetries of the tectum opticum in the pigeon , 1997, Experimental Brain Research.

[144]  M. Haby,et al.  An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxidase, fluorescence and degeneration techniques , 1985, Brain Research.

[145]  M. Kemali,et al.  The asymmetry of the habenular nuclei of female and male frogs in spring and in winter , 1990, Brain Research.

[146]  C. Caltagirone,et al.  Asymmetry of Parietal Interhemispheric Connections in Humans , 2011, The Journal of Neuroscience.

[147]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[148]  C J Gurusinghe,et al.  The influence of testosterone on the sex‐dependent structural asymmetry of the medial habenular nucleus in the chicken , 1986, The Journal of comparative neurology.

[149]  C. Koch,et al.  A category-specific response to animals in the right human amygdala , 2011, Nature Neuroscience.

[150]  B. Antonisamy,et al.  Gender‐ and age‐related differences in the morphology of the corpus callosum , 2003, Clinical anatomy.

[151]  A. Tang,et al.  Neonatal novelty exposure, dynamics of brain asymmetry, and social recognition memory. , 2004, Developmental psychobiology.

[152]  G. Vallortigara The evolutionary psychology of left and right: costs and benefits of lateralization. , 2006, Developmental psychobiology.

[153]  O. Güntürkün,et al.  Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon's (Columba livia) visual system. , 1999, Behavioral neuroscience.

[154]  D. Long The Two Halves of the Brain , 2011 .

[155]  L. Rogers,et al.  Light exposure during incubation affects competitive behaviour in domestic chicks , 1989 .

[156]  David Wolman,et al.  The split brain: A tale of two halves , 2012, Nature.

[157]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[158]  T. Préat,et al.  Neuroanatomy: Brain asymmetry and long-term memory , 2004, Nature.

[159]  Peter L. Hurd,et al.  Variation in asymmetry of the habenular nucleus correlates with behavioural asymmetry in a cichlid fish , 2011, Behavioural Brain Research.

[160]  A. Wisniewski SEXUALLY-DIMORPHIC PATTERNS OF CORTICAL ASYMMETRY, AND THE ROLE FOR SEX STEROID HORMONES IN DETERMINING CORTICAL PATTERNS OF LATERALIZATION , 1998, Psychoneuroendocrinology.