A level set method for vapor bubble dynamics

This paper describes a finite-difference computational method suitable for the simulation of vapor-liquid (or gas-liquid) flows in which the dynamical effects of the vapor can be approximated by a time-dependent, spatially uniform pressure acting on the interface. In such flows it is not necessary to calculate the velocity and temperature fields in the vapor (or gas). This feature simplifies the solution of the problem and permits the computational effort to be focussed on the temperature field, upon which the interfacial mass flux is critically dependent. The interface is described by a level set method modified with a high-order ''subcell fix'' with excellent mass conservation properties. The use of irregular stencils is avoided by suitably extrapolating the velocity and temperature fields in the vapor region. Since the accurate computation of momentum effects does not require the same grid refinement as that of the temperature field, the velocity field is interpolated on a finer grid used for the temperature calculation. Several validation and grid refinement axi-symmetric tests are described which demonstrate the intended first-order time, second-order space accuracy of the method. As an illustration of the capabilities of the computational procedure, the growth and subsequent collapse of a laser-generated vapor bubble in a microtube are described.

[1]  Vijay K. Dhir,et al.  Numerical Simulations of the Dynamics and Heat Transfer Associated With a Single Bubble in Subcooled Pool Boiling , 2010 .

[2]  Akira Asai,et al.  One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers , 1987 .

[3]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[4]  A. Prosperetti,et al.  Bubble Dynamics and Cavitation , 1977 .

[5]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[6]  R. Verzicco,et al.  A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates , 1996 .

[7]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[8]  A. Prosperetti,et al.  Vapour bubble collapse in isothermal and non-isothermal liquids , 2008, Journal of Fluid Mechanics.

[9]  Akira Asai,et al.  Application of the Nucleation Theory to the Design of Bubble Jet Printers , 1989 .

[10]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[11]  B. T. Chao,et al.  On the Mechanics of Vapor Bubble Collapse , 1965 .

[12]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[13]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[14]  Frédéric Gibou,et al.  Second-Order Accurate Computation of Curvatures in a Level Set Framework Using Novel High-Order Reinitialization Schemes , 2008, J. Sci. Comput..

[15]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[16]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[17]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[18]  S. Welch,et al.  A Volume of Fluid Based Method for Fluid Flows with Phase Change , 2000 .

[19]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[20]  E. Can Vapor bubbles in confined geometries : a numerical study , 2010 .

[21]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[22]  Liwei Lin,et al.  A thermal-bubble-actuated micronozzle-diffuser pump , 2002 .

[23]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[24]  Sébastien Tanguy,et al.  A Level Set Method for vaporizing two-phase flows , 2007, J. Comput. Phys..

[25]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[26]  Stéphane Popinet,et al.  Bubble collapse near a solid boundary: a numerical study of the influence of viscosity , 2002, Journal of Fluid Mechanics.

[27]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[28]  Frédéric Gibou,et al.  A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change , 2007, J. Comput. Phys..

[29]  A. Pisano,et al.  Microbubble powered actuator , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[30]  Andrea Prosperetti,et al.  The pumping effect of growing and collapsing bubbles in a tube. , 1999 .

[31]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[32]  Norman A. Evans Unsteady magnetohydrodynamic boundary layer on a semi‐infinite flat plate , 1973 .

[33]  Andrea Prosperetti,et al.  A second-order boundary-fitted projection method for free-surface flow computations , 2006, J. Comput. Phys..

[34]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[35]  Andrea Prosperetti,et al.  The collapse of vapor bubbles in a spatially non-uniform flow , 2000 .

[36]  T. Ye,et al.  Direct numerical simulations of micro-bubble expansion in gas embolotherapy. , 2004, Journal of biomechanical engineering.

[37]  D. Lohse,et al.  Growth and collapse of a vapour bubble in a microtube: the role of thermal effects , 2009, Journal of Fluid Mechanics.

[38]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[39]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[40]  Gaurav Tomar,et al.  Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method , 2005 .

[41]  Claus-Dieter Ohl,et al.  Surface cleaning from laser-induced cavitation bubbles , 2006 .

[42]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[43]  Andrea Prosperetti,et al.  Growth and collapse of a vapor bubble in a narrow tube , 2000 .

[44]  G. Son A LEVEL SET METHOD FOR INCOMPRESSIBLE TWO-FLUID FLOWS WITH IMMERSED SOLID BOUNDARIES , 2005 .

[45]  Andrea Prosperetti,et al.  Bubble growth on an impulsively powered microheater , 2004 .

[46]  A. Asai,et al.  Bubble Dynamics in Boiling Under High Heat Flux Pulse Heating , 1991 .

[47]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[48]  M. Elwenspoek,et al.  Explosive Micro-Bubble Actuator , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[49]  Vijay K. Dhir,et al.  A Level Set Method for Analysis of Film Boiling on an Immersed Solid Surface , 2007 .

[50]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[51]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[52]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[53]  G. Son,et al.  Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes , 2008 .

[54]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[55]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .