Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors

Abstract: The nervous system of seeing animals derives information about optic flow in two subsequent steps. First, local motion vectors are calculated from moving retinal images, and second, the spatial distribution of these vectors is analyzed on the dendrites of large downstream neurons. In dipteran flies, this second step relies on a set of motion-sensitive lobula plate tangential cells (LPTCs), which have been studied in great detail in large fly species. Yet, studies on neurons that convey information to LPTCs and neuroanatomical investigations that enable a mechanistic understanding of the underlying dendritic computations in LPTCs are rare. We investigated the subcellular distribution of nicotinic acetylcholine receptors (nAChRs) on two sets of LPTCs: vertical system (VS) and horizontal system (HS) cells in Drosophila melanogaster. In this paper, we describe that both cell types express Dα7-type nAChR subunits specifically on higher order dendritic branches, similar to the expression of gamma aminobutyric acid (GABA) receptors. These findings support a model in which directional selectivity of LPTCs is achieved by the dendritic integration of excitatory, cholinergic, and inhibitory GABA-ergic input from local motion detectors with opposite preferred direction. Nonetheless, whole-cell recordings in mutant flies without Dα7 nAChRs revealed that direction selectivity of VS and HS cells is largely retained. In addition, mutant LPTCs were responsive to acetylcholine and remaining nAChR receptors were labeled by α-bungarotoxin. These results in LPTCs with genetically manipulated excitatory input synapses suggest a robust cellular implementation of dendritic processing that warrants direction selectivity. The underlying mechanism that ensures appropriate nAChR-mediated synaptic currents and the functional implications of separate sets or heteromultimeric nAChRs can now be addressed in this system.

[1]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[2]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[3]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[4]  Roberto Danovaro,et al.  Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss , 2008, Current Biology.

[5]  Y. Hamasaka,et al.  γ‐Aminobutyric acid (GABA) signaling components in Drosophila: Immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter , 2007, The Journal of comparative neurology.

[6]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[7]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[8]  Andrew K. Jones,et al.  Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species , 2007, Invertebrate Neuroscience.

[9]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[10]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[11]  P. Hiesinger,et al.  The Nicotinic Acetylcholine Receptor Dα7 Is Required for an Escape Behavior inDrosophila , 2006, PLoS biology.

[12]  A. Borst,et al.  Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.

[13]  Benedict M. Sattelle,et al.  Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  Alexander Borst,et al.  Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.

[15]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[17]  K. P. Rajashekhar,et al.  Golgi analysis of tangential neurons in the lobula plate ofDrosophila melanogaster , 2004, Journal of Biosciences.

[18]  Y. Hamasaka,et al.  Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. , 2004, Journal of neurophysiology.

[19]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[20]  A. Borst,et al.  Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.

[21]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[22]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[23]  D. Sattelle,et al.  Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. , 2002, Genetics.

[24]  E. Gundelfinger,et al.  Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co‐assemble 
into the same receptor complex , 2002, Journal of neurochemistry.

[25]  Alexander Borst,et al.  Cholinergic and GABAergic pathways in fly motion vision , 2001, BMC Neuroscience.

[26]  E. Gundelfinger,et al.  Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the α‐subunit Dα3 and the β‐type subunit ARD co‐assemble within the same receptor complex , 2000 .

[27]  Alexander Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.

[28]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[29]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[30]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[31]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[32]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[33]  Alexander Borst,et al.  A preparation of the blowfly (Calliphora erythrocephala) brain for in vitro electrophysiological and pharmacological studies , 1995, Journal of Neuroscience Methods.

[34]  E. Gundelfinger,et al.  Expression of the ligand-binding nicotinic acetylcholine receptor subunit D alpha 2 in the Drosophila central nervous system. , 1994, Journal of neurobiology.

[35]  E. Gundelfinger,et al.  Acetylcholine receptors of theDrosophila brain: A 900 bp promoter fragment contains the essential information for specific expression of theard gene in vivo , 1994 .

[36]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[37]  E. Gundelfinger,et al.  Immunohistochemical localization of a ligand‐binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster , 1993, The Journal of comparative neurology.

[38]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[39]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.

[40]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Cole Gilbert,et al.  Membrane Conductance Changes Associated with the Response of Motion Sensitive Insect Visual Neurons , 1990, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[42]  R. ffrench-Constant,et al.  Isolation of dieldrin resistance from field populations of Drosophila melanogaster (Diptera: Drosophilidae). , 1990, Journal of economic entomology.

[43]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[44]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[45]  H. Betz,et al.  Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high‐affinity alpha‐bungarotoxin binding complex. , 1988, The EMBO journal.

[46]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[47]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[48]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[49]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[50]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[51]  C. Stevens The acetylcholine receptor , 1980, Nature.

[52]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[53]  I. W. Mclean,et al.  PERIODATE-LYSINE-PARAFORMALDEHYDE FIXATIVE A NEW FIXATIVE FOR IMMUNOELECTRON MICROSCOPY , 1974, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[55]  I. Bülthoff Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2005, Journal of Comparative Physiology A.

[56]  A. Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: II. Active Membrane Properties , 2004, Journal of Computational Neuroscience.

[57]  E. Gundelfinger,et al.  Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the alpha-subunit dalpha3 and the beta-type subunit ARD co-assemble within the same receptor complex. , 2000, FEBS Letters.

[58]  E. Gundelfinger,et al.  Acetylcholine receptors of the Drosophila brain: a 900 bp promoter fragment contains the essential information for specific expression of the ard gene in vivo. , 1994, FEBS Letters.

[59]  D. Sattelle,et al.  Acetylcholine receptor/channel molecules of insects. , 1993, EXS.

[60]  D. Sattelle Acetylcholine Receptors of Insects , 1980 .

[61]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .