Ground state of Kirchhoff type fractional Schrödinger equations with critical growth

[1]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[2]  M. Schechter A Variation of the Mountain Pass Lemma and Applications , 1991 .

[3]  M. Willem Minimax Theorems , 1997 .

[4]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[6]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  A. Cotsiolis,et al.  Best constants for Sobolev inequalities for higher order fractional derivatives , 2004 .

[8]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[9]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[10]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[11]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  W. Zou,et al.  A BERESTYCKI-LIONS THEOREM REVISITED , 2012 .

[13]  Ming Cheng,et al.  Bound state for the fractional Schrödinger equation with unbounded potential , 2012 .

[14]  Xiaojun Chang,et al.  Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity , 2013 .

[15]  Xiaojun Chang,et al.  Ground state solutions of asymptotically linear fractional Schrödinger equations , 2013 .

[16]  S. Secchi Ground state solutions for nonlinear fractional Schrödinger equations in RN , 2012, 1208.2545.

[17]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Yang Yang,et al.  On fractional Schrödinger equation in RN with critical growth , 2013 .

[19]  Enrico Valdinoci,et al.  A critical Kirchhoff type problem involving a nonlocal operator , 2013 .

[20]  Giuseppina Autuori,et al.  Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity , 2014, 1410.6762.

[21]  Enrico Valdinoci,et al.  The Brezis-Nirenberg result for the fractional Laplacian , 2014 .

[22]  Jihui Zhang,et al.  Ground states for fractional Schrödinger equations with critical growth , 2014 .

[23]  A. Fiscella Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator , 2015, Differential and Integral Equations.

[24]  Patrizia Pucci,et al.  Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setl , 2015, Calculus of Variations and Partial Differential Equations.

[25]  M. Squassina,et al.  Fractional Schrödinger–Poisson Systems with a General Subcritical or Critical Nonlinearity , 2015, 1503.08765.

[26]  Xudong Shang,et al.  Concentrating solutions of nonlinear fractional Schrödinger equation with potentials , 2015 .

[27]  C. O. Alves,et al.  Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method , 2015, 1508.03964.

[28]  W. Zou,et al.  Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities , 2016 .

[29]  C. O. Alves,et al.  A critical nonlinear fractional elliptic equation with saddle-like potential in ℝN , 2016 .

[30]  Patrizia Pucci,et al.  Critical stationary Kirchhoff equations in RN involving nonlocal operators , 2016 .

[31]  Marco Squassina,et al.  Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension , 2016, 1612.07914.

[32]  K. Teng Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent , 2016 .

[33]  V. Mácha,et al.  Hölder continuity of velocity gradients for shear-thinning fluids under perfect slip boundary conditions , 2017 .