Control variates for estimation based on reversible Markov chain Monte Carlo samplers
暂无分享,去创建一个
[1] Stephen S. Lavenberg,et al. A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .
[2] Averill M. Law,et al. Simulation Modeling and Analysis , 1982 .
[3] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[4] S. E. Hills,et al. Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .
[5] P. Barone,et al. Improving Stochastic Relaxation for Gussian Random Fields , 1990, Probability in the Engineering and Informational Sciences.
[6] Peter Muller,et al. Alternatives to the Gibbs Sampling Scheme , 1992 .
[7] P. Green,et al. Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .
[8] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[9] Sigrún Andradóttir,et al. Variance reduction through smoothing and control variates for Markov chain simulations , 1993, TOMC.
[10] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[11] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[12] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[13] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[14] Christian P. Robert,et al. MCMC Convergence Diagnostics : A « Reviewww » , 1998 .
[15] C. Geyer,et al. Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .
[16] Gareth O. Roberts,et al. Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .
[17] M. Caffarel,et al. Zero-Variance Principle for Monte Carlo Algorithms , 1999, cond-mat/9911396.
[18] P. Damlen,et al. Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .
[19] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[20] P. Diaconis,et al. Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.
[21] Christian P. Robert,et al. Riemann sums for MCMC estimation and convergence monitoring , 2001, Stat. Comput..
[22] P. Glynn,et al. Some New Perspectives on the Method of Control Variates , 2002 .
[23] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[24] Peter W. Glynn,et al. Approximating Martingales for Variance Reduction in Markov Process Simulation , 2002, Math. Oper. Res..
[25] S. Meyn,et al. Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.
[26] Dani Gamerman,et al. Space-varying regression models: specifications and simulation , 2001, Comput. Stat. Data Anal..
[27] Mira Antonietta,et al. Variance reduction in MCMC , 2003 .
[28] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[29] Sean P. Meyn,et al. Performance Evaluation and Policy Selection in Multiclass Networks , 2003, Discret. Event Dyn. Syst..
[30] G. Fort,et al. On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.
[31] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[32] Barry L. Nelson,et al. 50th ANNIVERSARY ARTICLE: Stochastic Simulation Research in Management Science , 2004, Manag. Sci..
[33] P. Diaconis,et al. Use of exchangeable pairs in the analysis of simulations , 2004 .
[34] B. Simon,et al. Adaptive simulation using perfect control variates , 2004, Journal of Applied Probability.
[35] B. Nelson. Stochastic Simulation Research in Management Science , 2004 .
[36] François Perron,et al. Improving on the Independent Metropolis-Hastings algorithm , 2005 .
[37] S. Meyn,et al. Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes , 2005, math/0509310.
[38] D. Gamerman,et al. Comparison of Sampling Schemes for Dynamic Linear Models , 2006 .
[39] S. Meyn. Large deviation asymptotics and control variates for simulating large functions , 2006, math/0603328.
[40] Steve P. Brooks,et al. Output Assessment for Monte Carlo Simulations via the Score Statistic , 2006 .
[41] Sean P. Meyn. Control Techniques for Complex Networks: Workload , 2007 .
[42] Sujin Kim,et al. Adaptive Control Variates for Finite-Horizon Simulation , 2007, Math. Oper. Res..
[43] Hugo Lewi Hammer,et al. Norges Teknisk-naturvitenskapelige Universitet Control Variates for the Metropolis-hastings Algorithm Control Variates for the Metropolis-hastings Algorithm , 2022 .
[44] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[45] Benjamin Jourdain,et al. Does Waste Recycling Really Improve the Multi-Proposal Metropolis–Hastings algorithm? an Analysis Based on Control Variates , 2009, Journal of Applied Probability.
[46] P. Dellaportas,et al. Notes on Using Control Variates for Estimation with Reversible MCMC Samplers , 2009, 0907.4160.
[47] Petros Dellaportas,et al. Control Variates for Reversible MCMC Samplers , 2010, 1008.1355.
[48] Fabrizio Leisen,et al. A New Multinomial Model and a Zero Variance Estimation , 2010, Commun. Stat. Simul. Comput..
[49] A. Pettitt,et al. Introduction to MCMC , 2012 .
[50] Antonietta Mira,et al. Zero variance Markov chain Monte Carlo for Bayesian estimators , 2010, Stat. Comput..