Control variates for estimation based on reversible Markov chain Monte Carlo samplers

Summary.  A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible Markov chain Monte Carlo samplers. We propose the use of a specific class of functions as control variates, and we introduce a new consistent estimator for the values of the coefficients of the optimal linear combination of these functions. For a specific Markov chain Monte Carlo scenario, the form and proposed construction of the control variates is shown to provide an exact solution of the associated Poisson equation. This implies that the estimation variance in this case (in the central limit theorem regime) is exactly zero. The new estimator is derived from a novel, finite dimensional, explicit representation for the optimal coefficients. The resulting variance reduction methodology is primarily (though certainly not exclusively) applicable when the simulated data are generated by a random‐scan Gibbs sampler. Markov chain Monte Carlo examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology are discussed and simulation examples are presented illustrating the utility of the methods proposed. All methodological and asymptotic arguments are rigorously justified under essentially minimal conditions.

[1]  Stephen S. Lavenberg,et al.  A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .

[2]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[3]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[4]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[5]  P. Barone,et al.  Improving Stochastic Relaxation for Gussian Random Fields , 1990, Probability in the Engineering and Informational Sciences.

[6]  Peter Muller,et al.  Alternatives to the Gibbs Sampling Scheme , 1992 .

[7]  P. Green,et al.  Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .

[8]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[9]  Sigrún Andradóttir,et al.  Variance reduction through smoothing and control variates for Markov chain simulations , 1993, TOMC.

[10]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[11]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[12]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[13]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[14]  Christian P. Robert,et al.  MCMC Convergence Diagnostics : A « Reviewww » , 1998 .

[15]  C. Geyer,et al.  Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .

[16]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .

[17]  M. Caffarel,et al.  Zero-Variance Principle for Monte Carlo Algorithms , 1999, cond-mat/9911396.

[18]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[19]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[20]  P. Diaconis,et al.  Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.

[21]  Christian P. Robert,et al.  Riemann sums for MCMC estimation and convergence monitoring , 2001, Stat. Comput..

[22]  P. Glynn,et al.  Some New Perspectives on the Method of Control Variates , 2002 .

[23]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[24]  Peter W. Glynn,et al.  Approximating Martingales for Variance Reduction in Markov Process Simulation , 2002, Math. Oper. Res..

[25]  S. Meyn,et al.  Spectral theory and limit theorems for geometrically ergodic Markov processes , 2002, math/0209200.

[26]  Dani Gamerman,et al.  Space-varying regression models: specifications and simulation , 2001, Comput. Stat. Data Anal..

[27]  Mira Antonietta,et al.  Variance reduction in MCMC , 2003 .

[28]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[29]  Sean P. Meyn,et al.  Performance Evaluation and Policy Selection in Multiclass Networks , 2003, Discret. Event Dyn. Syst..

[30]  G. Fort,et al.  On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.

[31]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[32]  Barry L. Nelson,et al.  50th ANNIVERSARY ARTICLE: Stochastic Simulation Research in Management Science , 2004, Manag. Sci..

[33]  P. Diaconis,et al.  Use of exchangeable pairs in the analysis of simulations , 2004 .

[34]  B. Simon,et al.  Adaptive simulation using perfect control variates , 2004, Journal of Applied Probability.

[35]  B. Nelson Stochastic Simulation Research in Management Science , 2004 .

[36]  François Perron,et al.  Improving on the Independent Metropolis-Hastings algorithm , 2005 .

[37]  S. Meyn,et al.  Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes , 2005, math/0509310.

[38]  D. Gamerman,et al.  Comparison of Sampling Schemes for Dynamic Linear Models , 2006 .

[39]  S. Meyn Large deviation asymptotics and control variates for simulating large functions , 2006, math/0603328.

[40]  Steve P. Brooks,et al.  Output Assessment for Monte Carlo Simulations via the Score Statistic , 2006 .

[41]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[42]  Sujin Kim,et al.  Adaptive Control Variates for Finite-Horizon Simulation , 2007, Math. Oper. Res..

[43]  Hugo Lewi Hammer,et al.  Norges Teknisk-naturvitenskapelige Universitet Control Variates for the Metropolis-hastings Algorithm Control Variates for the Metropolis-hastings Algorithm , 2022 .

[44]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[45]  Benjamin Jourdain,et al.  Does Waste Recycling Really Improve the Multi-Proposal Metropolis–Hastings algorithm? an Analysis Based on Control Variates , 2009, Journal of Applied Probability.

[46]  P. Dellaportas,et al.  Notes on Using Control Variates for Estimation with Reversible MCMC Samplers , 2009, 0907.4160.

[47]  Petros Dellaportas,et al.  Control Variates for Reversible MCMC Samplers , 2010, 1008.1355.

[48]  Fabrizio Leisen,et al.  A New Multinomial Model and a Zero Variance Estimation , 2010, Commun. Stat. Simul. Comput..

[49]  A. Pettitt,et al.  Introduction to MCMC , 2012 .

[50]  Antonietta Mira,et al.  Zero variance Markov chain Monte Carlo for Bayesian estimators , 2010, Stat. Comput..