Interface roughness estimate from carrier transport in InAs/GaSb superlattices

The performance of infrared focal plane arrays and quantum cascade lasers manufactured from InAs/GaSb type- II superlattices (SLs) depends on the mobility of carriers along the growth axis. In turn, the longitudinal mobility depends on the quality of SL interfaces. In-plane transport is a sensitive measure of interface quality and the degree of interface roughness scattering (IRS). In this paper, we demonstrate the IRS-limited transport regime in InAs/GaSb SL samples grown for this study. We find that the in-plane mobility μ as a function of InAs layer width L behaves as μ ∝ L5 , which closely follows the classic sixth power dependence expected from theory. Fits to the mobility data indicate that, for one monolayer surface roughness, the roughness correlation length is about 35 Å.

[1]  David H. Tomich,et al.  Exploring optimum growth for high quality InAs/GaSb type-II superlattices , 2004 .

[2]  Manijeh Razeghi,et al.  High differential resistance type-II InAs∕GaSb superlattice photodiodes for the long-wavelength infrared , 2006 .

[3]  Jeffrey H. Warner,et al.  Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes , 2006 .

[4]  Bruno Ullrich,et al.  Short-period InAs∕GaSb type-II superlattices for mid-infrared detectors , 2005 .

[5]  Wang,et al.  Interface roughness and asymmetry in InAs/GaSb superlattices studied by scanning tunneling microscopy. , 1994, Physical review letters.

[6]  Bruno Ullrich,et al.  Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors , 2005, Optics + Optoelectronics.

[7]  F. Mollot,et al.  Probing the interface fluctuations in semiconductor superlattices using a magneto-transport technique , 1994 .

[8]  Jeffrey H. Warner,et al.  W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency , 2006 .

[9]  X. Han,et al.  A model for scattering due to interface roughness in finite quantum wells , 2005 .

[10]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[11]  B. Nag Interface roughness scattering limited mobility in AlAs/GaAs, Al0.3Ga0.7As/GaAs and Ga0.5In0.5P/GaAs quantum wells , 2004 .

[12]  Gail J. Brown,et al.  Demonstration of interface-scattering-limited electron mobilities in InAs∕GaSb superlattices , 2007 .

[13]  Jerry R. Meyer,et al.  Interface roughness scattering in semiconducting and semimetallic InAs‐Ga1−xInxSb superlattices , 1993 .

[14]  Frank Fuchs,et al.  Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes , 2002 .

[15]  J. Palmier,et al.  Effect of interface roughness on non-linear vertical transport in GaAs/AlAs superlattices , 1993 .

[16]  Hoffman,et al.  Electron and hole in-plane mobilities in HgTe-CdTe superlattices. , 1992, Physical review. B, Condensed matter.

[17]  Frank Fuchs,et al.  Optoelectronic properties of photodiodes for the mid-and far-infrared based on the InAs/GaSb/AlSb materials family , 2001, SPIE OPTO.

[18]  R. Gottinger,et al.  Interface Roughness Scattering and Electron Mobilities in Thin GaAs Quantum Wells , 1988 .

[19]  P. N. Butcher,et al.  Interface roughness scattering in a superlattice , 1990 .

[20]  Krishnamurthy Mahalingam,et al.  Optimization of mid-infrared InAs∕GaSb type-II superlattices , 2004 .

[21]  B. Nag,et al.  Interface roughness scattering-limited electron mobility in AlAs/GaAs and Ga0.5In0.5P/GaAs wells , 1999 .

[22]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[23]  Yajun Wei,et al.  Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes , 2004 .

[24]  Gail J. Brown,et al.  Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .

[25]  T. Nee,et al.  Quantum Spectroscopy of the Low-Field Oscillations in the Surface Impedance , 1968 .

[26]  Antoni Rogalski,et al.  InAs/GaInSb superlattices as a promising material system for third generation infrared detectors , 2005, Other Conferences.

[27]  Richard H. Miles,et al.  Anisotropy and growth-sequence dependence of atomic-scale interface structure in InAs/Ga1−xInxSb superlattices , 1997 .

[28]  Manijeh Razeghi,et al.  On the performance and surface passivation of type II InAs∕GaSb superlattice photodiodes for the very-long-wavelength infrared , 2005 .

[29]  Martin Walther,et al.  Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .