A Novel Approach for Optimal Trajectory Design with Multiple Operation Modes of Propulsion System, Part 1

Abstract Efficient performance of a number of engineering systems is achieved through different modes of operation - yielding systems described as “hybrid”, containing both real-valued and discrete decision variables. Prominent examples of such systems, in space applications, could be spacecraft equipped with 1) a variable- I sp , variable-thrust engine or 2) multiple engines each capable of switching on/off independently. To alleviate the challenges that arise when an indirect optimization method is used, a new framework — Composite Smooth Control (CSC) — is proposed that seeks smoothness over the entire spectrum of distinct control inputs. A salient aftermath of the application of the CSC framework is that the original multi-point boundary-value problem can be treated as a two-point boundary-value problem with smooth, differentiable control inputs; the latter is notably easier to solve, yet can be made to accurately approximate the former hybrid problem. The utility of the CSC framework is demonstrated through a multi-year, multi-revolution heliocentric fuel-optimal trajectory for a spacecraft equipped with a variable- I sp , variable-thrust engine.

[1]  John L. Junkins,et al.  Generic Smoothing for Optimal Bang-Off-Bang Spacecraft Maneuvers , 2018, Journal of Guidance, Control, and Dynamics.

[2]  David H. Manzella,et al.  High-Power Solar Electric Propulsion for Future NASA Missions , 2014 .

[3]  Fanghua Jiang,et al.  Power-limited low-thrust trajectory optimization with operation point detection , 2018 .

[4]  Ravi Mathur,et al.  Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System , 2010 .

[5]  Ryan P. Russell,et al.  A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control Problems. Part 1: Theory , 2012, Journal of Optimization Theory and Applications.

[6]  Ellen Braden,et al.  Rapid Mars Transits With Exhaust- Modulated Plasma Propulsion , 1995 .

[7]  Michael J. Grant,et al.  Relaxed Autonomously Switched Hybrid System Approach to Indirect Multiphase Aerospace Trajectory Optimization , 2017 .

[8]  Prashant Patel,et al.  Maximizing Payload Mass Fractions of Spacecraft for Interplanetary Electric Propulsion Missions , 2006 .

[9]  John L. Junkins,et al.  Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization , 2019, Journal of Guidance, Control, and Dynamics.

[10]  Mohammadreza Saghamanesh,et al.  A robust homotopic approach for continuous variable low-thrust trajectory optimization , 2018, Advances in Space Research.

[11]  Carl G. Sauer Solar Electric Performance for Medlite and Delta Class Planetary Missions , 1997 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  John T. Betts,et al.  Optimal low‒thrust orbit transfers with eclipsing , 2015 .

[14]  Denis Estublier,et al.  The Smart-1 Electric Propulsion Subsystem , 2003 .

[15]  James D. Turner,et al.  Optimal Actuator Failure Control Using a Homotopy Method , 2015 .

[16]  Yanyan Li,et al.  Geostationary station-keeping with electric propulsion in full and failure modes , 2019, Acta Astronautica.

[17]  Bruce A. Conway,et al.  Application and Analysis of Bounded-Impulse Trajectory Models with Analytic Gradients , 2018, Journal of Guidance, Control, and Dynamics.

[18]  Alessandro Antonio Quarta,et al.  Minimum-time space missions with solar electric propulsion , 2011 .

[19]  Dario Izzo,et al.  Real-time optimal control via Deep Neural Networks: study on landing problems , 2016, ArXiv.

[20]  Jose A. Lozano,et al.  Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions , 2018, Progress in Aerospace Sciences.

[21]  M. Kim,et al.  Continuous Low-Thrust Trajectory Optimization: Techniques and Applications , 2005 .

[22]  C. G. Sauer Application of solar electric propulsion to future planetary missions , 1987 .

[23]  Michael Drews,et al.  Solar electric propulsion orbital debris ferry, vehicle concept and reference mission , 2015 .

[24]  G. Genta,et al.  Optimal low-thrust trajectories for nuclear and solar electric propulsion , 2016 .

[25]  Jon A. Sims,et al.  Preliminary Design of Low-Thrust Interplanetary Missions , 1997 .

[26]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[27]  Binfeng Pan,et al.  A new probability-one homotopy method for solving minimum-time low-thrust orbital transfer problems , 2018, Astrophysics and Space Science.

[28]  Yangyang Ma,et al.  A quadratic homotopy method for fuel-optimal low-thrust trajectory design , 2019 .

[29]  Damon Landau,et al.  Cargo logistics for a Notional Mars Base using Solar Electric Propulsion , 2019, Acta Astronautica.

[30]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[31]  Jean Albert Kechichian,et al.  Optimal low-thrust transfer using variable bounded thrust☆☆☆ , 1995 .

[32]  Lorenzo Casalino,et al.  Optimization of Variable-Specific-Impulse Interplanetary Trajectories , 2002 .

[33]  Giuseppe D. Racca New Challenges to Trajectory Design by the Use of Electric Propulsion and Other New Means of Wandering in the Solar System , 2003 .

[34]  Yang Gao,et al.  Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique , 2017 .

[35]  T. N. Edelbaum,et al.  How many impulses , 1967 .

[36]  Paolo L. Gatti,et al.  Introduction to Dynamics and Control of Flexible Structures , 1996 .

[37]  Bruce A. Conway,et al.  Automated Mission Planning via Evolutionary Algorithms , 2012 .

[38]  Jean Albert Kechichian The streamlined and complete set of the nonsingular J2-perturbed dynamic and adjoint equations for trajectory optimization in terms of eccentric longitude , 2007 .

[39]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[40]  Hitoshi Kuninaka,et al.  Lessons learned from round trip of Hayabusa asteroid explorer in deep space , 2011, 2011 Aerospace Conference.

[41]  Michael J. Grant,et al.  Epsilon-Trig Regularization Method for Bang-Bang Optimal Control Problems , 2016 .

[42]  Bernard Bäker,et al.  Computationally efficient velocity and power split control of hybrid electric vehicles , 2017, 2017 IEEE Conference on Control Technology and Applications (CCTA).

[43]  Dario Izzo,et al.  Low-thrust trajectory design as a constrained global optimization problem , 2011 .

[44]  Gao Yang Earth-moon Trajectory Optimization Using Solar Electric Propulsion , 2007 .

[45]  Bernd Dachwald,et al.  Main belt asteroid sample return mission using solar electric propulsion , 2008 .

[46]  M. S. Konstantinov,et al.  Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys , 2017 .

[47]  R. Armellin,et al.  Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft , 2016 .

[48]  I. Michael Ross A Roadmap for Optimal Control: The Right Way to Commute , 2005, Annals of the New York Academy of Sciences.

[49]  Bruno Sarli,et al.  Hayabusa 2 extension plan: Asteroid selection and trajectory design , 2017 .

[50]  Marc D. Rayman,et al.  Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres , 2006 .

[51]  Richard Hofer,et al.  High-Specific Impulse Operation of the BPT-4000 Hall Thruster for NASA Science Missions , 2010 .

[52]  Junfeng Li,et al.  Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization , 2012 .

[53]  Marc D. Rayman,et al.  Design of the First Interplanetary Solar Electric Propulsion Mission , 2002 .

[54]  Peng Zhang,et al.  Fuel-optimal trajectory design using solar electric propulsion under power constraints and performance degradation , 2014 .

[55]  C. G. Sauer,et al.  Advanced solar electric propulsion (ASEP) for planetary missions , 1984 .

[56]  Koki Ho,et al.  Optimization of in-space supply chain design using high-thrust and low-thrust propulsion technologies , 2018 .

[57]  James M. Longuski,et al.  Automated Missed-Thrust Propellant Margin Analysis for Low-Thrust Trajectories , 2015 .

[58]  Emmanuel Trélat,et al.  Optimal Control and Applications to Aerospace: Some Results and Challenges , 2012, Journal of Optimization Theory and Applications.

[59]  Bruce A. Conway,et al.  A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems , 2011, Journal of Optimization Theory and Applications.

[60]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[61]  Robert D. Braun,et al.  Rapid Indirect Trajectory Optimization for Conceptual Design of Hypersonic Missions , 2015 .

[62]  Yu Song,et al.  Solar sail trajectory optimization of multi-asteroid rendezvous mission , 2019, Acta Astronautica.

[63]  Alessandro Antonio Quarta,et al.  Tradeoff Performance of Hybrid Low-Thrust Propulsion System , 2007 .

[64]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[65]  John L. Junkins,et al.  How Many Impulses Redux , 2019, The Journal of the Astronautical Sciences.

[66]  Ryan P. Russell,et al.  A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control Problems. Part 2: Application , 2012, Journal of Optimization Theory and Applications.

[67]  Cesar A. Ocampo,et al.  Optimization of Roundtrip, Time-Constrained, Finite Burn Trajectories via an Indirect Method , 2005 .

[68]  Alessandro Antonio Quarta,et al.  Optimal trade studies of interplanetary electric propulsion missions , 2008 .

[69]  Zhao Chang-yin,et al.  Optimization of Low-Thrust Trajectories Using an Indirect Shooting Method without Guesses of Initial Costates☆☆☆ , 2012 .

[70]  Dan M. Goebel,et al.  Solar Electric Propulsion for Discovery-Class Missions , 2014 .

[71]  Karthik Duraisamy,et al.  Quad-Rotor Flight Simulation in Realistic Atmospheric Conditions , 2019, AIAA Journal.

[72]  M. J. Walker A set of modified equinoctial orbit elements , 1985 .

[73]  Ehsan Taheri,et al.  Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control , 2014 .

[74]  Damon Landau,et al.  Simple Semi-Analytic Model for Optimized Interplanetary Low-Thrust Trajectories Using Solar Electric Propulsion , 2013 .

[75]  Bruce A. Conway,et al.  Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .

[76]  Ilya Kolmanovsky,et al.  Performance Comparison of Smoothing Functions for Indirect Optimization of Minimum-Fuel Low-thrust Trajectories , 2018 .

[77]  Jacob A Englander,et al.  An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem. , 2017, Journal of guidance, control, and dynamics : a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control.

[78]  Hexi Baoyin,et al.  Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach , 2012 .

[79]  V. G. Petukhov,et al.  Method of continuation for optimization of interplanetary low-thrust trajectories , 2012 .

[80]  Junfeng Li,et al.  Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists , 2015 .

[81]  Gregory J. Whiffen,et al.  Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design , 2006 .

[82]  C. Hall,et al.  Approximate initial Lagrange costates for continuous-thrust spacecraft , 1996 .

[83]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[84]  P. Lu,et al.  Double-Homotopy Method for Solving Optimal Control Problems , 2016 .

[85]  C. Kluever Efficient Computation of Optimal Interplanetary Trajectories Using Solar Electric Propulsion , 2015 .

[86]  Hiroyuki Koizumi,et al.  The technological and commercial expansion of electric propulsion , 2019, Acta Astronautica.

[87]  Ilya Kolmanovsky,et al.  Shaping low-thrust trajectories with thrust-handling feature , 2017 .

[88]  Hao Zhang,et al.  Low-Thrust Minimum-Fuel Trajectory Optimization Using Multiple Shooting Augmented by Analytical Derivatives , 2019, Journal of Guidance, Control, and Dynamics.

[89]  I. Kolmanovsky,et al.  Enhanced Smoothing Technique for Indirect Optimization of Minimum-Fuel Low-Thrust Trajectories , 2016 .

[90]  R. Epenoy,et al.  New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation , 2002 .