Diagnostics for Time Series Analysis

Test statistics are proposed to determine the goodness of fit of a time series model. The test statistics are based on a sequence of random variables that are independent and standard normal if the model is correct. The paper shows how to compute this sequence of random variables efficiently using a combination of Markov chain Monte Carlo and importance sampling. The power of the statistics to detect outliers and level shifts is studied for an autoregressive model. The methodology is illustrated using both simulated and real data.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[3]  S. Shapiro,et al.  An Approximate Analysis of Variance Test for Normality , 1972 .

[4]  Jim Q. Smith,et al.  Diagnostic checks of non‐standard time series models , 1985 .

[5]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[6]  A. Madansky Prescriptions for working statisticians , 1988 .

[7]  M. McAleer,et al.  A Monte Carlo Study of Some Tests of Model Adequacy in Time Series Analysis , 1989 .

[8]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[9]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[10]  Roger M. Sauter,et al.  Introduction to Statistical Quality Control (2nd ed.) , 1992 .

[11]  R. McCulloch,et al.  Bayesian Inference and Prediction for Mean and Variance Shifts in Autoregressive Time Series , 1993 .

[12]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[13]  J. Geweke Bayesian comparison of econometric models , 1994 .

[14]  R. McCulloch,et al.  BAYESIAN ANALYSIS OF AUTOREGRESSIVE TIME SERIES VIA THE GIBBS SAMPLER , 1994 .

[15]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[16]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[17]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[18]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[19]  R. Kohn,et al.  Bayesian Estimation of an Autoregressive Model Using MarkovChain , 1996 .

[20]  Stephen Gray Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process , 1996 .

[21]  R. Kohn,et al.  Bayesian estimation of an autoregressive model using Markov chain Monte Carlo , 1996 .

[22]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[23]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .