Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation

[1]  M. Hepworth,et al.  Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis , 2020, Frontiers in Immunology.

[2]  Qi Yang,et al.  Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review , 2020, Nutrients.

[3]  S. Robson,et al.  Cathelicidin Mediates a Protective Role of Vitamin D in Ulcerative Colitis and Human Colonic Epithelial Cells. , 2020, Inflammatory bowel diseases.

[4]  T. Jorgensen,et al.  Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity , 2020, Frontiers in Immunology.

[5]  Binghao Wang,et al.  Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination , 2019, Front. Immunol..

[6]  Q. Guan A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease , 2019, Journal of immunology research.

[7]  B. de Courten,et al.  Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial , 2019, Nutrients.

[8]  A. Hart,et al.  Deficient Resident Memory T Cell and CD8 T Cell Response to Commensals in Inflammatory Bowel Disease , 2019, Journal of Crohn's & colitis.

[9]  O. Nielsen,et al.  Systematic review with meta‐analysis: association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease , 2019, Alimentary pharmacology & therapeutics.

[10]  Bo Li,et al.  Protective effects of vitamin D against injury in intestinal epithelium , 2019, Pediatric Surgery International.

[11]  Chao Zhang,et al.  Vitamin D deficiency associated with Crohn’s disease and ulcerative colitis: a meta-analysis of 55 observational studies , 2019, Journal of Translational Medicine.

[12]  A. Keshteli,et al.  A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice , 2019, Scientific Reports.

[13]  T. Ohteki,et al.  Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells , 2019, Front. Immunol..

[14]  L. Peyrin-Biroulet,et al.  Comorbidities in inflammatory bowel disease: a call for action. , 2019, The lancet. Gastroenterology & hepatology.

[15]  Yinglin Xia,et al.  Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  A. Patterson,et al.  Vitamin D Regulates the Microbiota to Control the Numbers of RORγt/FoxP3+ Regulatory T Cells in the Colon , 2019, Front. Immunol..

[17]  Yan Zhou,et al.  Fecal microbiota transplantation for ulcerative colitis: a prospective clinical study , 2019, BMC Gastroenterology.

[18]  C. Rogers,et al.  Aligning the Paradoxical Role of Vitamin D in Gastrointestinal Immunity , 2019, Trends in Endocrinology & Metabolism.

[19]  Y. Li,et al.  Vitamin D/Vitamin D Receptor Signaling Is Required for Normal Development and Function of Group 3 Innate Lymphoid Cells in the Gut , 2019, iScience.

[20]  Jun Sun,et al.  1154 – Lack of Vitamin D Receptor in Paneth Cells Leads to Impaired Anti-Bacterial Ability , 2019, Gastroenterology.

[21]  Subrata Ghosh,et al.  The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management , 2019, Nutrients.

[22]  J. Adams,et al.  Free versus total serum 25-hydroxyvitamin D in a murine model of colitis , 2019, The Journal of Steroid Biochemistry and Molecular Biology.

[23]  Wen-Tao Ma,et al.  Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens , 2019, Front. Immunol..

[24]  A. Ivens,et al.  1,25-Dihydroxyvitamin D3 Restrains CD4+ T Cell Priming Ability of CD11c+ Dendritic Cells by Upregulating Expression of CD31 , 2019, Front. Immunol..

[25]  N. Akhtar,et al.  Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis , 2019, Gut.

[26]  Xiangfang Zeng,et al.  Functions of Macrophages in the Maintenance of Intestinal Homeostasis , 2019, Journal of immunology research.

[27]  Jinzhen Cai,et al.  1,25-Dihydroxy-Vitamin D3 induces macrophage polarization to M2 by upregulating T-cell Ig-mucin-3 expression , 2019, Molecular medicine reports.

[28]  K. Faber,et al.  Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases , 2019, Front. Immunol..

[29]  J. Sanderson,et al.  Reduced CD27−IgD− B Cells in Blood and Raised CD27−IgD− B Cells in Gut-Associated Lymphoid Tissue in Inflammatory Bowel Disease , 2019, Front. Immunol..

[30]  M. Cantorna,et al.  Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis , 2019, Critical reviews in biochemistry and molecular biology.

[31]  P. Carmeliet,et al.  Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism , 2019, The Journal of Steroid Biochemistry and Molecular Biology.

[32]  Hu Zhang,et al.  NLRP3 Inflammasome and Inflammatory Bowel Disease , 2019, Front. Immunol..

[33]  S. Snapper,et al.  Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis , 2019, Nature Medicine.

[34]  Jiayao Yan,et al.  1,25(OH)2D3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model , 2019, Gut Pathogens.

[35]  K. Faber,et al.  Assessing intestinal permeability in Crohn’s disease patients using orally administered 52Cr-EDTA , 2019, PloS one.

[36]  B. Schroeder Fight them or feed them: how the intestinal mucus layer manages the gut microbiota , 2019, Gastroenterology report.

[37]  P. Pfeffer,et al.  Journal of Steroid Biochemistry and Molecular Biology Vitamin D (1,25(OH) 2 D3) induces α -1-antitrypsin synthesis by CD4 + T cells, which is required for 1,25(OH) 2 D3-driven IL-10 , 2022 .

[38]  The gut microbiota heterogeneity and assembly changes associated with the IBD , 2019, Scientific Reports.

[39]  M. Cantorna,et al.  Vitamin D Is Required for ILC3 Derived IL-22 and Protection From Citrobacter rodentium Infection , 2019, Front. Immunol..

[40]  T. Vatanen,et al.  The Super-Donor Phenomenon in Fecal Microbiota Transplantation , 2019, Front. Cell. Infect. Microbiol..

[41]  L. Rejnmark,et al.  Managing vitamin D deficiency in inflammatory bowel disease , 2019, Frontline Gastroenterology.

[42]  A. Gasbarrini,et al.  What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases , 2019, Microorganisms.

[43]  Yinglin Xia,et al.  Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. , 2018, Inflammatory bowel diseases.

[44]  A. Stagg Intestinal Dendritic Cells in Health and Gut Inflammation , 2018, Front. Immunol..

[45]  A. Bäumler,et al.  Colonocyte metabolism shapes the gut microbiota , 2018, Science.

[46]  N. Chen,et al.  Efficacy of vitamin D in treatment of inflammatory bowel disease , 2018, Medicine.

[47]  J. Raes,et al.  Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis , 2018, Microbiome.

[48]  K. Jacobson,et al.  Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome , 2018, Immunology.

[49]  R. Locksley,et al.  Innate Lymphoid Cells: 10 Years On , 2018, Cell.

[50]  I. Lawrance,et al.  High Dose Vitamin D supplementation alters faecal microbiome and predisposes mice to more severe colitis , 2018, Scientific Reports.

[51]  A. Hart,et al.  The Effect of Vitamin D on Intestinal Inflammation and Faecal Microbiota in Patients with Ulcerative Colitis , 2018, Journal of Crohn's & colitis.

[52]  J. Gisbert,et al.  The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. , 2018, Inflammatory bowel diseases.

[53]  R. Newberry,et al.  Goblet cells: multifaceted players in immunity at mucosal surfaces , 2018, Mucosal Immunology.

[54]  M. Kaplan,et al.  Effector T Helper Cell Subsets in Inflammatory Bowel Diseases , 2018, Front. Immunol..

[55]  B. Zeng,et al.  Commensal Bacteria-Dependent CD8αβ+ T Cells in the Intestinal Epithelium Produce Antimicrobial Peptides , 2018, Front. Immunol..

[56]  B. Kreikemeyer,et al.  Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls , 2018, Journal of digestive diseases.

[57]  A. Patterson,et al.  The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23 , 2018, Front. Immunol..

[58]  D. Bikle,et al.  Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review , 2018, Bone reports.

[59]  A. Simmons,et al.  Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease , 2018, Front. Med..

[60]  John H. White Vitamin D deficiency and the pathogenesis of Crohn’s disease , 2018, The Journal of Steroid Biochemistry and Molecular Biology.

[61]  Andrew Y. Koh,et al.  Precision editing of the gut microbiota ameliorates colitis , 2018, Nature.

[62]  Y. Cong,et al.  GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3 , 2017, Mucosal Immunology.

[63]  N. Gassler Paneth cells in intestinal physiology and pathophysiology , 2017, World journal of gastrointestinal pathophysiology.

[64]  Jie Du,et al.  Microbiota-Dependent Induction of Colonic Cyp27b1 Is Associated With Colonic Inflammation: Implications of Locally Produced 1,25-Dihydroxyvitamin D3 in Inflammatory Regulation in the Colon , 2017, Endocrinology.

[65]  Richard A. Flavell,et al.  Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells , 2017, Cell reports.

[66]  A. Bäumler,et al.  Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. , 2017, Current opinion in microbiology.

[67]  L. Albenberg,et al.  Gut microbiota and IBD: causation or correlation? , 2017, Nature Reviews Gastroenterology &Hepatology.

[68]  A. Gasbarrini,et al.  The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease , 2017, International journal of molecular sciences.

[69]  M. Jacques,et al.  Interactions of Intestinal Bacteria with Components of the Intestinal Mucus , 2017, Front. Cell. Infect. Microbiol..

[70]  Kris A. DeMali,et al.  Interplay between tight junctions & adherens junctions , 2017, Experimental cell research.

[71]  C. Lebrilla,et al.  Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion , 2017, Science.

[72]  Bin Lan,et al.  A vitamin D receptor agonist converts CD4+ T cells to Foxp3+ regulatory T cells in patients with ulcerative colitis , 2017, Oncotarget.

[73]  J. Raes,et al.  The resilience of the intestinal microbiota influences health and disease , 2017, Nature Reviews Microbiology.

[74]  B. Neville,et al.  Transmission of the gut microbiota: spreading of health , 2017, Nature Reviews Microbiology.

[75]  P. Snyder,et al.  Vitamin D Receptor–Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis , 2017, Endocrinology.

[76]  Liqiang Shi,et al.  Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases , 2017, Front. Pharmacol..

[77]  Zhi-Gang Liu,et al.  Vitamin D3 induces vitamin D receptor and HDAC11 binding to relieve the promoter of the tight junction proteins , 2017, Oncotarget.

[78]  M. Kamm,et al.  Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-analysis , 2017, Journal of Crohn's & colitis.

[79]  C. Mackay,et al.  Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells , 2017, The Journal of Immunology.

[80]  Jun Sun,et al.  Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. , 2017, Current medicinal chemistry.

[81]  E. Zechner Inflammatory disease caused by intestinal pathobionts. , 2017, Current opinion in microbiology.

[82]  P. De Cruz,et al.  An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease , 2017, Inflammatory bowel diseases.

[83]  M. Kawahara,et al.  Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease , 2017, Journal of Gastroenterology.

[84]  P. Wilmes,et al.  A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility , 2016, Cell.

[85]  John H. White,et al.  Species-specific regulation of innate immunity by vitamin D signaling , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[86]  C. Lebrilla,et al.  Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. , 2016, Cell host & microbe.

[87]  G. Stangl,et al.  Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. , 2016, Nutrition research.

[88]  L. Maggio-Price,et al.  Protective links between vitamin D, inflammatory bowel disease and colon cancer. , 2016, World journal of gastroenterology.

[89]  Robert L. Perlman,et al.  Mouse models of human disease evolutionary perspective , 2016 .

[90]  C. Mancini,et al.  Eubiosis and dysbiosis: the two sides of the microbiota. , 2016, The new microbiologica.

[91]  Jie Du,et al.  1,25-Dihydroxyvitamin D Protects Intestinal Epithelial Barrier by Regulating the Myosin Light Chain Kinase Signaling Pathway , 2015, Inflammatory bowel diseases.

[92]  Jun Sun,et al.  Tight junction CLDN2 gene is a direct target of the vitamin D receptor , 2015, Scientific Reports.

[93]  A. Bleich,et al.  A Multihit Model: Colitis Lessons from the Interleukin-10–deficient Mouse , 2015, Inflammatory bowel diseases.

[94]  T. Pieber,et al.  Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract , 2015, European Journal of Nutrition.

[95]  Yinglin Xia,et al.  Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. , 2015, Clinical therapeutics.

[96]  M. Johansson,et al.  New developments in goblet cell mucus secretion and function , 2015, Mucosal Immunology.

[97]  Jie Du,et al.  Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation , 2015, The Journal of Steroid Biochemistry and Molecular Biology.

[98]  M. Cantorna,et al.  Vitamin D and 1,25(OH)2D Regulation of T cells , 2015, Nutrients.

[99]  Yongyan Shi,et al.  Vitamin D/VDR signaling pathway ameliorates 2,4,6-trinitrobenzene sulfonic acid-induced colitis by inhibiting intestinal epithelial apoptosis , 2015, International journal of molecular medicine.

[100]  K. Bennett,et al.  Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study , 2015, United European gastroenterology journal.

[101]  Sung Hee Lee,et al.  Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases , 2015, Intestinal research.

[102]  R. Newberry,et al.  Microbial Sensing by Goblet Cells Controls Immune Surveillance of Luminal Antigens in the Colon , 2014, Mucosal Immunology.

[103]  Jing Zhu,et al.  Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers , 2014, Inflammation.

[104]  A. Mathias,et al.  Role of secretory IgA in the mucosal sensing of commensal bacteria , 2014, Gut microbes.

[105]  P. Kvietys,et al.  Gastrointestinal Mucosal Defense System , 2014 .

[106]  Jie Du,et al.  MicroRNA-346 Mediates Tumor Necrosis Factor &agr;–Induced Downregulation of Gut Epithelial Vitamin D Receptor in Inflammatory Bowel Diseases , 2014, Inflammatory bowel diseases.

[107]  M. Hornef,et al.  Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa , 2014, Gut microbes.

[108]  P. Sherman,et al.  Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. , 2014, The Journal of infectious diseases.

[109]  J. Adams,et al.  Regulation of the extrarenal CYP27B1-hydroxylase , 2014, The Journal of Steroid Biochemistry and Molecular Biology.

[110]  Yinglin Xia,et al.  Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis , 2014, Gut.

[111]  L. Öhman,et al.  Spontaneous Colitis in Muc2-Deficient Mice Reflects Clinical and Cellular Features of Active Ulcerative Colitis , 2014, PloS one.

[112]  C. Kaetzel,et al.  Secretory IgA is Concentrated in the Outer Layer of Colonic Mucus along with Gut Bacteria , 2014, Pathogens.

[113]  C. Rogers,et al.  Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. , 2013, The Journal of nutrition.

[114]  M. Bissonnette,et al.  Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. , 2013, The Journal of clinical investigation.

[115]  C. Abraham,et al.  TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. , 2013, Gastroenterology.

[116]  Jie Du,et al.  Vitamin D Receptor Inhibits Nuclear Factor κB Activation by Interacting with IκB Kinase β Protein* , 2013, The Journal of Biological Chemistry.

[117]  S. Lira,et al.  Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. , 2013, Immunity.

[118]  A. Gewirtz,et al.  Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis , 2013, Gut.

[119]  M. Campbell,et al.  Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor , 2013, Steroids.

[120]  Jun Sun,et al.  Vitamin D, vitamin D receptor and tissue barriers , 2013, Tissue barriers.

[121]  Caroline H. Johnson,et al.  Implication of intestinal VDR deficiency in inflammatory bowel disease. , 2013, Biochimica et biophysica acta.

[122]  Hong Zhang,et al.  Protective role of 1,25(OH)2vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice , 2012, BMC Gastroenterology.

[123]  H. DeLuca,et al.  Where is the vitamin D receptor? , 2002, Archives of biochemistry and biophysics.

[124]  John H. White Vitamin D metabolism and signaling in the immune system , 2012, Reviews in Endocrine and Metabolic Disorders.

[125]  Jian Yu,et al.  PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. , 2011, The Journal of clinical investigation.

[126]  D. Bruce,et al.  Intrinsic Requirement for the Vitamin D Receptor in the Development of CD8αα-Expressing T Cells , 2011, The Journal of Immunology.

[127]  Yuquan Wei,et al.  The p53 Upregulated Modulator of Apoptosis (PUMA) Chemosensitizes Intrinsically Resistant Ovarian Cancer Cells to Cisplatin by Lowering the Threshold Set by Bcl-xL and Mcl-1 , 2011, Molecular medicine.

[128]  Yinglin Xia,et al.  Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. , 2010, The American journal of pathology.

[129]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[130]  H. DeLuca,et al.  Identification of a highly specific and versatile vitamin D receptor antibody. , 2010, Archives of biochemistry and biophysics.

[131]  Liping Su,et al.  Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. , 2009, Gastroenterology.

[132]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[133]  M. Osanai,et al.  Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. , 2008, Molecular biology of the cell.

[134]  M. Hässig,et al.  Vitamin D receptor distribution in intestines of domesticated sheep Ovis ammon f. aries , 2008, Journal of morphology.

[135]  G. Ning,et al.  Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[136]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[137]  C. Lamberg-Allardt Vitamin D in foods and as supplements. , 2006, Progress in biophysics and molecular biology.

[138]  J. Meijerink,et al.  Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. , 2006, Gastroenterology.

[139]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[140]  I. Gipson,et al.  The role of calcium in mucin packaging within goblet cells. , 2003, Experimental eye research.

[141]  A. Howie,et al.  Extrarenal Expression of 25-Hydroxyvitamin D3-1α-Hydroxylase1 , 2001 .

[142]  A. Howie,et al.  The Journal of Clinical Endocrinology & Metabolism Printed in U.S.A. Copyright © 2001 by The Endocrine Society Extrarenal Expression of 25-Hydroxyvitamin , 2022 .

[143]  M. Cantorna,et al.  1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. , 2000, The Journal of nutrition.