Compact Millimeter-Wave CMOS Wideband Three-Transmission-Zeros Bandstop Filter Using a Single Coupled-Line Unit

This brief presents the design and implementation of millimeter-wave ultra-wide bandstop filter (BSF) using a standard 0.18-<inline-formula> <tex-math notation="LaTeX">${\mu }\text{m}$ </tex-math></inline-formula> CMOS technology. The BSF configuration consists of a single coupled-line resonator shorted at the middle, which operates as not only a resonant element but also an open stub. The BSF realizes three transmission zeros in the stopband that results in sharp skirt selectivity. The overall width of the filter is less than the width of a 50-<inline-formula> <tex-math notation="LaTeX">$ {\Omega }$ </tex-math></inline-formula> line and occupies a compact area of <inline-formula> <tex-math notation="LaTeX">$0.0066 {\lambda }_{ {g}} \,\, {\times } \,\, 0.443 {\lambda }_{ {g}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$ {\lambda }_{ {g}}$ </tex-math></inline-formula> is the guided wavelength at 60 GHz. Explicit design equations are derived analytically using lossless transmission model. A prototype wideband BSF with a 3-dB bandwidth of 110% at 60 GHz is realized on a thin-film microstrip structure. The impact of several CMOS process parameters on the designed filter is also examined.

[1]  A. Chin,et al.  40-GHz coplanar waveguide bandpass filters on silicon substrate , 2002, IEEE Microwave and Wireless Components Letters.

[2]  Michael B. Steer,et al.  Foundations of Interconnect and Microstrip Design , 2000 .

[3]  Shih-Ming Wang,et al.  Compact and wideband microstrip bandstop filter , 2005 .

[4]  Lei Zhu,et al.  Millimeter-Wave Bandpass Filters by Standard 0.18-$\mu\hbox{m}$ CMOS Technology , 2007, IEEE Electron Device Letters.

[5]  Adrian Tang,et al.  Coupling-Inductor-Based Hybrid mm-Wave CMOS SPST Switch , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Didier Belot,et al.  Codesign of a PA–Antenna Block in Silicon Technology for 80-GHz Radar Application , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  C. Nguyen,et al.  A novel CMOS hairpin resonator using slow-wave structure , 2005, IEEE Microwave and Wireless Components Letters.

[8]  Venkata Narayana Rao Vanukuru,et al.  60 GHz millimeter-wave compact TFMS bandstop filter using transversal resonator in 0.18μm CMOS technology , 2014, 2014 IEEE International Microwave and RF Conference (IMaRC).

[9]  Nicolas Deparis,et al.  UWB in Millimeter Wave Band With Pulsed ILO , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Dong Il Kim,et al.  Compact Structure With Three Attenuation Poles for Improving Stopband Characteristics , 2006, IEEE Microwave and Wireless Components Letters.

[11]  Hsu Cheng-Ying,et al.  A 60-GHz Millimeter-Wave Bandpass Filter Using 0.18-$\mu\hbox{m}$ CMOS Technology , 2008, IEEE Electron Device Letters.

[12]  Joungho Kim,et al.  Embedded microstrip interconnection lines for gigahertz digital circuits , 2000 .

[13]  Xiaowei Sun,et al.  Millimeter‐wave low‐loss transmission lines and resonators in standard 0.18‐μm CMOS technology , 2008 .

[14]  Ming Li,et al.  Design of mM-W Fully Integrated CMOS Standing-Wave VCOs Using Low-Loss CPW Resonators , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Haiwei Zhang,et al.  60-GHz CMOS Current-Combining PA With Adaptive Back-Off PAE Enhancement , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Xiaowei Sun,et al.  Size reduction of microwave and millimeter-wave passive circuits by UC-PBG in standard 0.18-μm CMOS technology , 2008 .

[17]  Young-Se Kwon,et al.  Ku-band stop filter implemented on a high resistivity silicon with inverted microstrip line photonic bandgap (PBG) structure , 2005, IEEE Microwave and Wireless Components Letters.

[18]  Kevin J. Chen,et al.  Low‐loss microwave filters on CMOS‐grade standard silicon substrate with low‐k BCB dielectric , 2004 .

[19]  Vamsi Krishna Velidi,et al.  Millimeter-wave ultra-wideband bandpass filter with quarter-wavelength short-stubs and port extensions using 0.18-μm CMOS process , 2015, 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[20]  M. B. Steer,et al.  Foundations of Interconnect and Microstrip Design: Edwards/Foundations of Interconnect and Microstrip Design , 2000 .

[21]  Yong-Zhong Xiong,et al.  Design of 60- and 77-GHz Narrow-Bandpass Filters in CMOS Technology , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Alvin J. Joseph,et al.  A Thin-Film SOI 180nm CMOS RF Switch Technology , 2009 .