Ordering based on implications

Implication function I on a bounded lattice L is defined by means of some boundary conditions and monotonicity constraints. On the other hand, each implication function I on L defines a special relation which, in some cases, can be a (partial) order on L. We study the properties of I resulting into such (partial) orders. A special attention is given do situations yielding new bounded lattices.

[1]  Jozef Pócs,et al.  Note on generating fuzzy concept lattices via Galois connections , 2012, Inf. Sci..

[2]  Funda Karaçal,et al.  A t-partial order obtained from t-norms , 2011, Kybernetika.

[3]  Yandong Yu,et al.  Pseudo-t-norms and implication operators on a complete Brouwerian lattice , 2002, Fuzzy Sets Syst..

[4]  Joan Torrens,et al.  The law of importation for discrete implications , 2009, Inf. Sci..

[5]  Zhudeng Wang,et al.  Residual operations of left and right uninorms on a complete lattice , 2009, Fuzzy Sets Syst..

[6]  Zhudeng Wang,et al.  Residual coimplicators of left and right uninorms on a complete lattice , 2009, Fuzzy Sets Syst..

[7]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[8]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[9]  Radko Mesiar,et al.  Triangular norms on product lattices , 1999, Fuzzy Sets Syst..

[10]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[11]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[12]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[13]  Jesús Medina,et al.  Multi-adjoint t-concept lattices , 2010, Inf. Sci..

[14]  Joan Torrens,et al.  Residual implications on the set of discrete fuzzy numbers , 2013, Inf. Sci..

[15]  Funda Karaçal,et al.  On the direct decomposability of strong negations and S-implication operators on product lattices , 2006, Inf. Sci..

[16]  Ma Zherui,et al.  Logical operators on complete lattices , 1991, Inf. Sci..