Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

[1]  M. Murnane,et al.  Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation. , 2000, Optics letters.

[2]  T. Planchon,et al.  Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders. , 2004, Optics letters.

[3]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[4]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[5]  Erich E Hoover,et al.  Advances in multiphoton microscopy technology , 2013, Nature Photonics.

[6]  Z. Bor,et al.  Distortion of femtosecond laser pulses in lenses and lens systems. , 1988 .

[7]  J. Kafka,et al.  Prism-pair dispersive delay lines in optical pulse compression. , 1987, Optics letters.

[8]  Ulrich A. Russek,et al.  Pulse compression by use of deformable mirrors. , 1999, Optics letters.

[9]  D. Miller,et al.  Spatiotemporal control of ultrashort optical pulses by refractive-diffractive-dispersive structured optical elements. , 2001, Optics letters.

[10]  G. Mourou,et al.  Wave-front correction of femtosecond terawatt lasers by deformable mirrors. , 1998, Optics letters.

[11]  Martin J. Booth,et al.  Dynamic control of directional asymmetry observed in ultrafast laser direct writing , 2012 .

[12]  R. Sauerbrey,et al.  Measurement of the pulse-front distortion in high-numerical-aperture optics , 2000 .

[13]  D. Milkie,et al.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes , 2014, Nature Methods.

[14]  U. Stamm,et al.  Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems , 1992 .

[15]  Z. Bor,et al.  Distortion of femtosecond laser pulses in lenses. , 1989, Optics letters.

[16]  K. Vodopyanov,et al.  Measurements of the group delay and the group delay dispersion with resonance scanning interferometer. , 2013, Optics express.

[17]  M. Booth Adaptive optics in microscopy. , 2003, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[18]  D Yelin,et al.  Adaptive femtosecond pulse compression. , 1997, Optics letters.

[19]  A. M. Weinera Femtosecond pulse shaping using spatial light modulators , 2000 .

[20]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[21]  R. Trebino,et al.  Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. , 2007, Optics express.

[22]  Erika Pastrana,et al.  Adaptive optics for biological imaging , 2011, Nature Methods.

[23]  A. Federico,et al.  Distortion of femtosecond pulses due to chromatic aberration in lenses , 1992 .

[24]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[25]  Z Bor,et al.  Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry. , 1989, Optics letters.

[26]  J. Squier,et al.  Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry. , 2007, Optics letters.

[27]  Andreas Tünnermann,et al.  Hybrid optics for focusing ultrashort laser pulses. , 2006, Optics letters.

[28]  Xun Gu,et al.  Pulse-front tilt caused by spatial and temporal chirp , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[29]  J. Bromage,et al.  Offner radial group delay compensator for ultra-broadband laser beam transport. , 2014, Optics letters.

[30]  Richard A Mathies,et al.  Femtosecond Stimulated Raman Spectroscopy. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  G. Love,et al.  Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator. , 1998, Applied optics.

[32]  J. Jasapara,et al.  Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. , 1999, Optics letters.

[33]  Alexander Jesacher,et al.  Parallel direct laser writing in three dimensions with spatially dependent aberration correction. , 2010, Optics express.

[34]  Satoshi Kawata,et al.  Methods for the characterization of deformable membrane mirrors. , 2005, Applied optics.

[35]  Sándor Szatmári,et al.  Pulse front and pulse duration distortion in refractive optics, and its compensation , 1988 .

[36]  Peter G. Kazansky,et al.  ``Quill'' writing with ultrashort light pulses in transparent materials , 2007 .

[37]  Rudolph,et al.  Femtosecond pulses in the focal region of lenses. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[38]  A. Weiner Ultrafast optical pulse shaping: A tutorial review , 2011 .

[39]  J. Squier,et al.  Dispersion pre‐compensation of 15 femtosecond optical pulses for high‐numerical‐aperture objectives , 1998, Journal of microscopy.