A smooth nonparametric conditional quantile frontier estimator

Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers. Recently, Aragon et al. [2005. Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory 21, 358-389] proposed a nonparametric [alpha]-frontier model and estimator based on a suitably defined conditional quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional distribution. In this paper, we propose a new smooth nonparametric conditional quantile estimator for the [alpha]-frontier model. Our estimator is a kernel based conditional quantile estimator that builds on early work of Azzalini [1981. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68, 326-328]. It is computationally simple, resistant to outliers and extreme values, and smooth. In addition, the estimator is shown to be consistent and asymptotically normal under mild regularity conditions. We also show that our estimator's variance is smaller than that of the estimator proposed by Aragon et al. A simulation study confirms the asymptotic theory predictions and contrasts our estimator with that of Aragon et al.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  P. Hall,et al.  Bandwidth selection for the smoothing of distribution functions , 1998 .

[3]  S. Girard,et al.  Extreme values and kernel estimates of point processes boundaries , 2004, 1103.5931.

[4]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[5]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[6]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[7]  Carlos Martins-Filho,et al.  Nonparametric frontier estimation via local linear regression , 2007 .

[8]  E. Mammen,et al.  On estimation of monotone and concave frontier functions , 1999 .

[9]  Shie-Shien Yang A Smooth Nonparametric Estimator of a Quantile Function , 1985 .

[10]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[11]  W. Greene,et al.  Economies of Scale in U.S. Electric Power Generation , 1976, Journal of Political Economy.

[12]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[13]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[14]  Michael Falk,et al.  Asymptotic Normality of the Kernel Quantile Estimator , 1985 .

[15]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[16]  E. Nadaraya,et al.  Some New Estimates for Distribution Functions , 1964 .

[17]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[18]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[19]  B. Park,et al.  On Polynomial Estimators of Frontiers and Boundaries , 1998 .

[20]  K. Knight Limiting Distributions of Linear Programming Estimators , 2001 .

[21]  M. C. Jones On kernel density derivative estimation , 1994 .

[22]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data , 2008 .