Non-isogenous abelian varieties sharing the same division fields

Two abelian varieties A1, A2 over a number field K are strongly iso-Kummerian if the torsion fields K(A1[d]) and K(A2[d]) coincide for all d ≥ 1. For all g ≥ 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair.

[1]  Rutger Noot Abelian varieties-Galois representation and properties of ordinary reduction , 1995 .

[2]  A. Peyrot,et al.  Towards the Sato–Tate groups of trinomial hyperelliptic curves , 2018, International Journal of Number Theory.

[3]  E. Kowalski Some local-global applications of Kummer theory , 2003 .

[4]  B. Moonen AN INTRODUCTION TO MUMFORD-TATE GROUPS by , 2004 .

[5]  P. Deligné Notes on Spinors , 2012 .

[6]  M. Larsen,et al.  On l-independence of algebraic monodromy groups in compatible systems of representatations , 1992 .

[7]  D. Lombardo On the $\ell$-adic Galois representations attached to nonsimple abelian varieties , 2014, 1402.1478.

[8]  D. Lombardo,et al.  REDUCTIONS OF POINTS ON ALGEBRAIC GROUPS , 2016, Journal of the Institute of Mathematics of Jussieu.

[9]  G. Geer,et al.  Good reduction of abelian varieties , 2014 .

[10]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[11]  D. Zywina Determining monodromy groups of abelian varieties , 2020, Research in Number Theory.

[12]  W. Gajda,et al.  On Galois representations for abelian varieties with complex and real multiplications , 2003 .

[13]  Galois representations attached to abelian varieties of CM type , 2015, 1506.04734.

[14]  Tetsuji Shioda Algebraic cycles on abelian varieties of fermat type , 1981 .

[15]  Fedor Bogomolov Sur l'algebricite des representations l-adiques , 1980 .

[16]  K. Ribet Division fields of abelian varieties with complex multiplication , 1980 .

[17]  Hodge Classes on Certain Types of Abelian Varieties , 1983 .

[18]  Kuga-Satake varieties and the Hodge conjecture , 1999, math/9903146.

[19]  J. Commelin The Mumford�Tate conjecture for products of abelian varieties , 2018, Algebraic Geometry.

[20]  A. Silverberg Fields of definition for homomorphisms of abelian varieties , 1992 .

[21]  I. Satake Abelian varieties attached to polarized K3-surfaces , 1967 .

[22]  Pierre Cartier,et al.  The algebraic theory of spinors and Clifford algebras , 1996 .

[23]  M. Larsen,et al.  A connectedness criterion for l-adic Galois representations , 1997 .

[24]  J. Wilson Curves of genus 2 with real multiplication by a square root of 5 , 1998 .

[25]  H. Pohlmann Algebraic Cycles on Abelian Varieties of Complex Multiplication Type , 1968 .