Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves
暂无分享,去创建一个
Michael Stoll | Franck Leprévost | William A. Stein | E. Victor Flynn | Edward F. Schaefer | Joseph L. Wetherell | E. V. Flynn | W. Stein | M. Stoll | F. Leprévost | J. L. Wetherell
[1] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[2] Michael Stoll,et al. Implementing 2-descent for Jacobians of hyperelliptic curves , 2001 .
[3] Qing Liu. Conducteur et discriminant minimal de courbes de genre 2 , 1994 .
[4] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .
[5] 志村 五郎,et al. Introduction to the arithmetic theory of automorphic functions , 1971 .
[6] John Cremona,et al. Visualizing Elements in the Shafarevich—Tate Group , 2000, Exp. Math..
[7] Jacobiennes de certaines courbes de genre $2$ : torsion et simplicité , 1995 .
[8] Bas Edixhoven. L'action de l'algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est «Eisenstein» , 1991 .
[9] David R. Kohel,et al. Component Groups of Quotients of J0(N) , 2000, ANTS.
[10] Nigel P. Smart,et al. Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .
[11] Gerhard Frey,et al. Arithmetic of Modular Curves and Applications , 1997, Algorithmic Algebra and Number Theory.
[12] J. Cassels,et al. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer. , 1965 .
[13] P. Deligne,et al. Groupes de monodromie en geometrie algebrique , 1972 .
[14] Alain Robert,et al. Introduction to modular forms , 1976 .
[15] Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point , 1993 .
[16] Siegfried Bosch,et al. Rational points of the group of components¶of a Néron model , 1998, math/9804069.
[17] J. L. Waldspurger,et al. Sur les coefficients de Fourier des formes modulaires de poids demi-entier , 1981 .
[18] Bjorn Poonen,et al. Cycles of quadratic polynomials and rational points on a genus-$2$ curve , 1995 .
[19] Xiangdong Wang. 2-dimensional simple factors ofJ0(N) , 1995 .
[20] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[21] B. Mazur,et al. Rational isogenies of prime degree , 1978 .
[22] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[23] Don Zagier,et al. On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3 , 1985 .
[24] James S. Milne,et al. Arithmetic Duality Theorems , 1987 .
[25] Michael Stoll,et al. On the height constant for curves of genus two, II , 1999 .
[26] R. Taylor,et al. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.
[27] E. V. Flynn,et al. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2: Weddle's surface , 1996 .
[28] Bas Edixhoven,et al. On the Manin constants of modular elliptic curves , 1991 .
[29] Bjorn Poonen,et al. The Cassels-Tate pairing on polarized abelian varieties , 1999 .
[30] Bjorn Poonen,et al. Explicit descent for Jacobians of cyclic coevers of the projective line. , 1997 .
[31] K. Ueno,et al. The complete classification of fibres in pencils of curves of genus two , 1973 .
[32] Don Zagier,et al. Heegner points and derivatives ofL-series , 1986 .
[33] Kenneth A. Ribet,et al. On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .
[34] J. Tate,et al. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog , 1966 .
[35] H. Swinnerton-Dyer,et al. Notes on elliptic curves. II. , 1963 .
[36] Some Abelian Varieties with Visible Shafarevich-Tate Groups , 1999 .
[37] Edward F. Schaefer. Computing a Selmer group of a Jacobian using functions on the curve , 1998 .
[38] Ralph Duncan James,et al. Proceedings of the International Congress of Mathematicians , 1975 .