Numerical solutions of the Boltzmann equation: comparison of different algorithms
暂无分享,去创建一个
[1] Tadeusz Płatkowski,et al. An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator , 2000 .
[2] Francis Filbet,et al. High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .
[3] Lorenzo Pareschi,et al. A recursive Monte Carlo method for the Boltzmann equation in the Maxwellian case , 2001, Monte Carlo Methods Appl..
[4] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[5] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[6] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[7] Andrzej Palczewski,et al. A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation , 1997 .
[8] Piotr Kowalczyk,et al. Fast numerical method for the Boltzmann equation on non-uniform grids , 2008, J. Comput. Phys..
[9] Lorenzo Pareschi,et al. Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..
[10] Lorenzo Pareschi,et al. Numerical solution of the Boltzmann equation by time relaxed Monte Carlo (TRMC) methods , 2005 .
[11] Lorenzo Pareschi,et al. Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..
[12] Graeme A. Bird,et al. Molecular Gas Dynamics , 1976 .
[13] H. Ballard,et al. Shock‐Front‐Thickness Measurements by an Electron Beam Technique , 1958 .