Quantum steering

Quantum correlations between two parties are essential for the argument of Einstein, Podolsky, and Rosen in favour of the incompleteness of quantum mechanics. Schr\"odinger noted that an essential point is the fact that one party can influence the wave function of the other party by performing suitable measurements. He called this phenomenon quantum steering and studied its properties, but only in the last years this kind of quantum correlation attracted significant interest in quantum information theory. In this paper the theory of quantum steering is reviewed. First, the basic concepts of steering and local hidden state models are presented and their relation to entanglement and Bell nonlocality is explained. Then various criteria for characterizing steerability and structural results on the phenomenon are described. A detailed discussion is given on the connections between steering and incompatibility of quantum measurements. Finally, applications of steering in quantum information processing and further related topics are reviewed.

[1]  Daniel Cavalcanti,et al.  All quantum states useful for teleportation are nonlocal resources , 2012, 1207.5485.

[2]  Thanh Vu,et al.  Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes , 2016 .

[3]  Geza Toth Entanglement witnesses in spin models , 2005 .

[4]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[5]  Masahito Hayashi,et al.  Universal Steering Criteria. , 2016, Physical review letters.

[6]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[7]  Paul Skrzypczyk,et al.  All Entangled States can Demonstrate Nonclassical Teleportation. , 2016, Physical review letters.

[8]  M. Reid,et al.  Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering , 2013, 1310.2729.

[9]  Nicolas Brunner,et al.  Sufficient criterion for guaranteeing that a two-qubit state is unsteerable , 2015, 1510.06721.

[10]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[11]  T. V'ertesi,et al.  Two-qubit Bell inequality for which positive operator-valued measurements are relevant , 2010, 1007.2578.

[12]  Popescu,et al.  Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.

[13]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[14]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[15]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[16]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[17]  Geoff J. Pryde,et al.  Experimental measurement-device-independent verification of quantum steering , 2014, Nature Communications.

[18]  N. Gisin Hidden quantum nonlocality revealed by local filters , 1996 .

[19]  Claudio Carmeli,et al.  Commutative POVMs and Fuzzy Observables , 2009, 0903.0523.

[20]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[21]  Chao Zhang,et al.  Experimental Validation of Quantum Steering Ellipsoids and Tests of Volume Monogamy Relations. , 2018, Physical review letters.

[22]  Juha-Pekka Pellonpaa,et al.  Unified picture for spatial, temporal, and channel steering , 2017, 1707.09237.

[23]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[24]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  A Rutkowski,et al.  Unbounded Violation of Quantum Steering Inequalities. , 2014, Physical review letters.

[26]  Thanh Vu,et al.  Quantum steering with positive operator valued measures , 2017, Journal of Physics A: Mathematical and Theoretical.

[27]  J. Watrous,et al.  All entangled states are useful for channel discrimination. , 2009, Physical Review Letters.

[28]  R. M. Angelo,et al.  Quantification of Einstein-Podolski-Rosen steering for two-qubit states , 2015, 1510.08030.

[29]  Teiko Heinosaari,et al.  An invitation to quantum incompatibility , 2015, 1511.07548.

[30]  Marek Żukowski,et al.  Quest for Ghz States , 1998 .

[31]  J. Eisert,et al.  Unifying several separability conditions using the covariance matrix criterion , 2008, 0803.0757.

[32]  Eric G. Cavalcanti,et al.  Analog of the Clauser-Horne-Shimony-Holt inequality for steering , 2015 .

[33]  N. Brunner,et al.  Genuine hidden quantum nonlocality. , 2013, Physical review letters.

[34]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Yeong-Cherng Liang,et al.  Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification , 2016, 1609.07581.

[36]  Paul Skrzypczyk,et al.  Quantifying Measurement Incompatibility of Mutually Unbiased Bases. , 2018, Physical review letters.

[37]  Xiaoting Wang,et al.  Conditional mutual information and quantum steering , 2016, 1612.03875.

[38]  Matty J. Hoban,et al.  A channel-based framework for steering, non-locality and beyond , 2017, 1708.00750.

[39]  N. Brunner,et al.  Algorithmic construction of local models for entangled quantum states: Optimization for two-qubit states , 2018, Physical Review A.

[40]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[41]  A. Pati,et al.  Stronger uncertainty relations for all incompatible observables. , 2014, Physical review letters.

[42]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[43]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[44]  Yichen Huang,et al.  Variance-based uncertainty relations , 2010, 1012.3105.

[45]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[46]  D Cavalcanti,et al.  General Method for Constructing Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[47]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[48]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[49]  Carlos Palazuelos,et al.  Superactivation of quantum nonlocality. , 2012, Physical review letters.

[50]  F. Herbut,et al.  Distant steering: Schrodinger's version of quantum non-separability , 1988 .

[51]  P. Busch,et al.  Unsharp reality and joint measurements for spin observables. , 1986, Physical review. D, Particles and fields.

[52]  M. Wolf,et al.  Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. , 2009, Physical review letters.

[53]  Roope Uola,et al.  Leggett-Garg macrorealism and the quantum nondisturbance conditions , 2018, Physical Review A.

[54]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[55]  Eric G. Cavalcanti,et al.  Loss-tolerant tests of Einstein-Podolsky-Rosen steering , 2013, 1310.8053.

[56]  Franco Nori,et al.  Einstein-Podolsky-Rosen steering: Its geometric quantification and witness , 2017, 1709.06703.

[57]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[58]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[59]  T. V'ertesi,et al.  Measurement incompatibility does not give rise to Bell violation in general , 2017, 1705.10069.

[60]  Teiko Heinosaari,et al.  Coexistence of qubit effects , 2008, 0802.4248.

[61]  G. Guo,et al.  Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[62]  Michal Horodecki,et al.  A Few Steps More Towards NPT Bound Entanglement , 2007, IEEE Transactions on Information Theory.

[63]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[64]  L. Aolita,et al.  A formalism for steering with local quantum measurements , 2017, New Journal of Physics.

[65]  Jan Myrheim,et al.  Geometrical aspects of entanglement , 2006 .

[66]  A. Pati,et al.  Bell’s Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality , 2016, Scientific Reports.

[67]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[68]  J. Uffink,et al.  Strengthened Bell inequalities for orthogonal spin directions , 2006, quant-ph/0604145.

[69]  Hyunseok Jeong,et al.  Measurement-device-independent and arbitrarily loss-tolerant verification of quantum steering , 2019, Physical Review A.

[70]  Tamás Vértesi,et al.  Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[71]  Huangjun Zhu,et al.  Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario , 2016, 1601.00962.

[72]  Thanh Vu,et al.  Nonseparability and steerability of two-qubit states from the geometry of steering outcomes , 2016, 1604.00265.

[73]  Otfried Gühne,et al.  Joint measurability of generalized measurements implies classicality. , 2014, Physical review letters.

[74]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[75]  Franco Nori,et al.  Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks , 2015, 1503.00612.

[76]  Nicolas Brunner,et al.  Quantum measurement incompatibility does not imply Bell nonlocality , 2017, 1707.06960.

[77]  G. Tóth,et al.  Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion , 2006, quant-ph/0604050.

[78]  Le Phuc Thinh,et al.  Quantum randomness extraction for various levels of characterization of the devices , 2014, 1401.4243.

[79]  H. M. Wiseman,et al.  Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states , 2014 .

[80]  Shin-Liang Chen,et al.  Exploring the framework of assemblage moment matrices and its applications in device-independent characterizations , 2018, Physical Review A.

[81]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[82]  Teiko Heinosaari,et al.  Non-disturbing quantum measurements , 2010, 1005.5659.

[83]  Nicolas Hadjisavvas,et al.  Properties of mixtures on non-orthogonal states , 1981 .

[84]  Paul Skrzypczyk,et al.  All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. , 2019, Physical review letters.

[85]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[86]  Otfried Gühne,et al.  One-to-One Mapping between Steering and Joint Measurability Problems. , 2015, Physical review letters.

[87]  Juha-Pekka Pellonpaa,et al.  Continuous-variable steering and incompatibility via state-channel duality , 2017, 1704.05734.

[88]  Michael J. W. Hall,et al.  Einstein–Podolsky–Rosen steering and the steering ellipsoid , 2014, 1411.1517.

[89]  Sabine Wollmann,et al.  Conclusive Experimental Demonstration of One-Way Einstein-Podolsky-Rosen Steering. , 2018, Physical review letters.

[90]  A. Acín,et al.  Simulating Positive-Operator-Valued Measures with Projective Measurements. , 2016, Physical review letters.

[91]  H. Wiseman,et al.  Unified criteria for multipartite quantum nonlocality , 2010, 1008.5014.

[92]  Paul Skrzypczyk,et al.  Quantitative relations between measurement incompatibility, quantum steering, and nonlocality , 2016, 1601.07450.

[93]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[94]  A. Miranowicz,et al.  Inseparability criteria based on matrices of moments , 2009 .

[95]  Marcelo Terra Cunha,et al.  Most incompatible measurements for robust steering tests , 2017, 1704.02994.

[96]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[97]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[98]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[99]  D Cavalcanti,et al.  Quantum steering: a review with focus on semidefinite programming , 2016, Reports on progress in physics. Physical Society.

[100]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[101]  V. Verma,et al.  Heralded quantum steering over a high-loss channel , 2016, Science Advances.

[102]  Marco T'ulio Quintino,et al.  Superactivation of quantum steering , 2016, 1610.01037.

[103]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[104]  David Jennings,et al.  Corrigendum: Quantum steering ellipsoids, extremal physical states and monogamy (2014 New J. Phys. 16 083017) , 2015 .

[105]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[106]  Ashish V. Thapliyal,et al.  Superactivation of bound entanglement. , 2000, Physical review letters.

[107]  Tobias Moroder,et al.  Calibration robust entanglement detection beyond Bell inequalities , 2011, 1111.5874.

[108]  Juha-Pekka Pellonpää,et al.  On coexistence and joint measurability of rank-1 quantum observables , 2014 .

[109]  T. Moroder,et al.  Truncated moment problem for spin and polarization states , 2008, 0803.1873.

[110]  Jaehak Lee,et al.  Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems , 2015, 1509.02550.

[111]  R. Werner,et al.  Implementation of Quantum Key Distribution with Composable Security Against Coherent Attacks using Einstein-Podolsky-Rosen Entanglement , 2015 .

[112]  Paul Busch,et al.  Coexistence of qubit effects , 2008, Quantum Inf. Process..

[113]  H. Wiseman,et al.  Volume monogamy of quantum steering ellipsoids for multiqubit systems , 2016, 1606.02390.

[114]  R. Werner Steering, or maybe why Einstein did not go all the way to Bellʼs argument , 2014 .

[115]  Franco Nori,et al.  Quantifying Non-Markovianity with Temporal Steering. , 2015, Physical review letters.

[116]  Jiangfeng Du,et al.  Geometric picture of quantum discord for two-qubit quantum states , 2011, 1102.4888.

[117]  Eric G. Cavalcanti,et al.  Entanglement verification and steering when Alice and Bob cannot be trusted , 2012, 1210.6051.

[118]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[119]  E. Cavalcanti,et al.  All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal , 2016, 1601.01703.

[120]  Marco T'ulio Quintino,et al.  Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$ , 2016, 1609.06114.

[121]  Franco Nori,et al.  Spatio-Temporal Steering for Testing Nonclassical Correlations in Quantum Networks , 2016, Scientific Reports.

[122]  Yingying Zhang,et al.  Finite-key bound for semi-device-independent quantum key distribution. , 2017, Optics express.

[123]  Shengjun Wu,et al.  Entropic uncertainty relation for mutually unbiased bases , 2008, 0811.2298.

[124]  Ravi Kunjwal,et al.  Quantum realization of arbitrary joint measurability structures , 2013, 1311.5948.

[125]  Eneet Kaur,et al.  Relative entropy of steering: On its definition and properties , 2016 .

[126]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[127]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[128]  Yang Wang,et al.  Finite-key analysis for one-sided device-independent quantum key distribution , 2013 .

[129]  C. Macchiavello,et al.  Multipartite steering inequalities based on entropic uncertainty relations , 2017, 1711.09707.

[130]  Franco Nori,et al.  Temporal steering inequality , 2013, 1310.4970.

[131]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[132]  W Vogel,et al.  Inseparability criteria for continuous bipartite quantum states. , 2005, Physical review letters.

[133]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[134]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[135]  T. Moroder,et al.  Steering bound entangled States: a counterexample to the stronger Peres conjecture. , 2014, Physical review letters.

[136]  Matthew F. Pusey,et al.  Negativity and steering: A stronger Peres conjecture , 2013, 1305.1767.

[137]  Shin-Liang Chen,et al.  Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing. , 2016, Physical review letters.

[138]  Gerardo Adesso,et al.  Strong subadditivity for log-determinant of covariance matrices and its applications , 2016, 1601.03226.

[139]  Sabine Wollmann,et al.  Necessary condition for steerability of arbitrary two-qubit states with loss , 2017, 1710.11355.

[140]  Yong-Sheng Zhang,et al.  Entanglement detection beyond the computable cross-norm or realignment criterion , 2007, 0709.3766.

[141]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[142]  A. Ferris,et al.  Asymmetric Gaussian steering: When Alice and Bob disagree , 2009, 0906.4851.

[143]  N. Brunner,et al.  Tight steering inequalities from generalized entropic uncertainty relations , 2018, Physical Review A.

[144]  G. Guo,et al.  Characterizing nonlocal correlations via universal uncertainty relations , 2017, 1705.08825.

[145]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[146]  Se-Wan Ji,et al.  Quantum steering of Gaussian states via non-Gaussian measurements , 2015, Scientific Reports.

[147]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[148]  Shao-Ming Fei,et al.  Steering Bell-diagonal states , 2016, Scientific Reports.

[149]  Sixia Yu,et al.  Family of nonlocal bound entangled states , 2015, 1509.08991.

[150]  Zeng-Bing Chen,et al.  Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle , 2016 .

[151]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[152]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[153]  Xiang-Jun Ye,et al.  Mapping criteria between nonlocality and steerability in qudit-qubit systems and between steerability and entanglement in qubit-qudit systems , 2018, Physical Review A.

[154]  Fu-Lin Zhang,et al.  Local-hidden-state models for Bell diagonal states and beyond , 2017, Physical Review A.

[155]  M. Ziman,et al.  Incompatible measurements on quantum causal networks , 2015, 1511.00976.

[156]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[157]  Jiangwei Shang,et al.  Quantifying Quantum Resources with Conic Programming. , 2018, Physical review letters.

[158]  Guang-Can Guo,et al.  Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination , 2018, 1802.09134.

[159]  Gustavo Lima,et al.  Device-Independent Certification of a Nonprojective Qubit Measurement. , 2016, Physical review letters.

[160]  Nai-Le Liu,et al.  Entanglement detection by local orthogonal observables. , 2004, Physical review letters.

[161]  Roger Colbeck,et al.  Keyring models: an approach to steerability. , 2017, Journal of mathematical physics.

[162]  Guang-Can Guo,et al.  Demonstration of Multisetting One-Way Einstein-Podolsky-Rosen Steering in Two-Qubit Systems. , 2017, Physical review letters.

[163]  Geometric local-hidden-state model for some two-qubit states , 2017, Physical Review A.

[164]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[165]  Eneet Kaur,et al.  Fundamental limits on key rates in device-independent quantum key distribution , 2018, New Journal of Physics.

[166]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[167]  Á. Rivas,et al.  Geometry of joint reality: Device-independent steering and operational completeness , 2019, Physical Review A.

[168]  Otfried Gühne,et al.  Steering Maps and Their Application to Dimension-Bounded Steering. , 2014, Physical review letters.

[169]  O. Guhne,et al.  Steering criteria from general entropic uncertainty relations , 2017, Physical Review A.

[170]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[171]  G. Guo,et al.  Geometric steering criterion for two-qubit states , 2017, 1710.06691.

[172]  Gerardo Adesso,et al.  Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. , 2014, Physical review letters.

[173]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[174]  R. Werner,et al.  State-Independent Uncertainty Relations and Entanglement Detection in Noisy Systems. , 2017, Physical review letters.

[175]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[176]  Florian J. Curchod,et al.  Unbounded randomness certification using sequences of measurements , 2015, 1510.03394.

[177]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[178]  Claudio Carmeli,et al.  Quantum Incompatibility Witnesses. , 2018, Physical review letters.

[179]  Franco Nori,et al.  Hierarchy in temporal quantum correlations , 2017, Physical Review A.

[180]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.

[181]  A. Peres All the Bell Inequalities , 1998, quant-ph/9807017.

[182]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[183]  Antony R. Lee,et al.  Quantification of Gaussian quantum steering. , 2014, Physical review letters.

[184]  Teiko Heinosaari,et al.  Adaptive strategy for joint measurements , 2016, 1604.08724.

[185]  Remigiusz Augusiak,et al.  Local hidden–variable models for entangled quantum states , 2014, 1405.7321.

[186]  Jiangfeng Du,et al.  Optimal measurement for quantum discord of two-qubit states , 2011, 1110.6681.

[187]  Xiaolong Su,et al.  Manipulating the direction of Einstein-Podolsky-Rosen steering , 2017, 1706.03165.

[188]  Sabine Wollmann,et al.  Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[189]  O. Gühne,et al.  Covariance matrices and the separability problem. , 2006, Physical review letters.

[190]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[191]  Pérès,et al.  Collective tests for quantum nonlocality. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[192]  The Schrödinger-HJW Theorem , 2003, quant-ph/0305068.

[193]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[194]  Gerardo Adesso,et al.  Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications , 2016, 1603.08173.

[195]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[196]  Otfried Gühne,et al.  Entropic Steering Criteria: Applications to Bipartite and Tripartite Systems , 2018, Entropy.

[197]  Paweł Horodecki,et al.  Quantum Steering Inequality with Tolerance for Measurement-Setting Errors: Experimentally Feasible Signature of Unbounded Violation. , 2017, Physical review letters.

[198]  Li Li,et al.  Joint measurement of two unsharp observables of a qubit , 2008, 0805.1538.

[199]  Michael M. Wolf,et al.  Coexistence does not imply joint measurability , 2013, 1307.6986.

[200]  A. Einstein QUANTEN‐MECHANIK UND WIRKLICHKEIT , 1948 .

[201]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[202]  Paul Skrzypczyk,et al.  Maximal Randomness Generation from Steering Inequality Violations Using Qudits. , 2018, Physical review letters.

[203]  T. Moroder,et al.  Testing quantum devices: Practical entanglement verification in bipartite optical systems , 2007, 0711.2709.

[204]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[205]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[206]  O. Gühne,et al.  Geometry of Einstein-Podolsky-Rosen Correlations. , 2018, Physical review letters.

[207]  Paul Skrzypczyk,et al.  Optimal randomness certification in the quantum steering and prepare-and-measure scenarios , 2015, 1504.08302.

[208]  Gerardo Adesso,et al.  Unconditional security of entanglement-based continuous-variable quantum secret sharing , 2016, 1603.03224.

[209]  D. Das,et al.  Detecting Einstein-Podolsky-Rosen steering through entanglement detection , 2018, Physical Review A.

[210]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[211]  David Jennings,et al.  Quantum steering ellipsoids, extremal physical states and monogamy , 2014, 1403.0418.

[212]  Stefano Pironio,et al.  Randomness versus nonlocality and entanglement. , 2011, Physical review letters.

[213]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[214]  Gerardo Adesso,et al.  Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations. , 2016, Physical review letters.

[215]  Teiko Heinosaari,et al.  Simultaneous measurement of two quantum observables: Compatibility, broadcasting, and in-between , 2016, 1604.00775.

[216]  K. V. Meyenn Eine Entdeckung von ganz außerordentlicher Tragweite , 2011 .

[217]  Nathan Walk,et al.  Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution , 2014, 1405.6593.

[218]  Nicolas Brunner,et al.  Entanglement without hidden nonlocality , 2016, 1606.02215.

[219]  Gerardo Adesso,et al.  Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. , 2015, Physical review letters.

[220]  Se-Wan Ji,et al.  Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture , 2014, 1411.0437.

[221]  G. Vallone Einstein-Podolsky-Rosen steering: Closing the detection loophole with non-maximally-entangled states and arbitrary low efficiency , 2012, 1209.5292.

[222]  Qiang Zhang,et al.  Genuine High-Order Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[223]  M. Paternostro,et al.  Einstein-Podolsky-Rosen Steering and Quantum Steering Ellipsoids: Optimal Two-Qubit States and Projective Measurements , 2016, 1611.05163.

[224]  Q. Y. He,et al.  Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems , 2011, 1103.3324.

[225]  N. Brunner,et al.  Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement , 2014, Nature Communications.

[226]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.