Recent advances of nanolead-free solder material for low processing temperature interconnect applications

Abstract Recent advances of nanolead-free solder materials for microelectronic packaging is presented. The syntheses of Sn, SnAg and SnAgCu nanoparticles and their size dependent melting temperature are discussed. Capping nanoparticle surfaces with organic molecules for antioxidation and particle size control is studied as well. An in-house made nanosolder pastes is formulated and its metallurgical joint onto a Cu substrate is demonstrated.

[1]  M. Abtew,et al.  Lead-free Solders in Microelectronics , 2000 .

[2]  K. S. Shin,et al.  Co-reduced Ag/Pd Bimetallic Nanoparticles: Surface Enrichment of Pd Revealed by Raman Spectroscopy , 2011 .

[3]  J. Duh,et al.  Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying , 2003 .

[4]  Y. Imry,et al.  Critical Points and Scaling Laws for Finite Systems , 1971 .

[5]  Q. Zhai,et al.  Recent Development of Nano-solder Paste for Electronics Interconnect Applications , 2008, 2008 10th Electronics Packaging Technology Conference.

[6]  F. Banhart,et al.  Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. , 2003, Physical review letters.

[7]  Mieko Takagi,et al.  Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films , 1954 .

[8]  K. Moon,et al.  Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders , 2007 .

[9]  J. Thomson Applications of Dynamics to Physics and Chemistry , 2009, Nature.

[10]  U. Landman,et al.  Phase Coexistence in Clusters , 1994 .

[11]  Min Gyu Kim,et al.  Effect of Capping Agents in Tin Nanoparticles on Electrochemical Cycling , 2006 .

[12]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[13]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[14]  Frank G. Shi,et al.  Size dependent thermal vibrations and melting in nanocrystals , 1994 .

[15]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[16]  Karl -Joseph Hanszen,et al.  Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen , 1960 .

[17]  L. Balan,et al.  A new organometallic synthesis of size-controlled tin(0) nanoparticles , 2005 .

[18]  Zhijun Zhang,et al.  Synthesis of In–Sn alloy nanoparticles by a solution dispersion method , 2004 .

[19]  J. Wilcoxon,et al.  Synthesis of transition metal clusters and their catalytic and optical properties , 1992 .

[20]  A. Gedanken,et al.  Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  Schafer,et al.  Melting of isolated tin nanoparticles , 2000, Physical review letters.

[22]  A. Shvartsburg,et al.  Solid clusters above the bulk melting point , 2000, Physical review letters.

[23]  Donald R. Ulrich,et al.  Chemical Processing of Ceramics , 1990 .

[24]  U. Landman,et al.  MELTING OF GOLD CLUSTERS : ICOSAHEDRAL PRECURSORS , 1998 .

[25]  S. Ghosh,et al.  UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles , 2002 .

[26]  R. Birringer,et al.  Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? , 1984 .

[27]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[28]  H. Ye,et al.  Three distinctive melting mechanisms in isolated nanoparticles , 2001 .

[29]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[30]  R. Rieke,et al.  Preparation, characterization, and chemistry of activated cobalt , 1986 .

[31]  Canada.,et al.  Melting, freezing, and coalescence of gold nanoclusters , 1997, cond-mat/9703153.

[32]  Q. Jiang,et al.  Entropy for solid-liquid transition in nanocrystals , 1998 .

[33]  J. Duh,et al.  Synthesis and Characterization of Lead-Free Solders with Sn-3.5Ag-xCu (x = 0.2 , 0.5, 1.0) Alloy Nanoparticles by the Chemical Reduction Method , 2005 .

[34]  C. Wronski The size dependence of the melting point of small particles of tin , 1967 .

[35]  Zhijun Zhang,et al.  Preparation of tin nanoparticles by solution dispersion , 2003 .

[36]  K. Klabunde,et al.  Solvated Metal Atom Dispersed Catalysts , 1991 .

[37]  C. Koch,et al.  Materials Synthesis by Mechanical Alloying , 1989 .

[38]  F. Hua,et al.  Size-dependent melting properties of tin nanoparticles , 2006 .

[39]  Yong Wang,et al.  Controlled Synthesis of V-shaped SnO2 Nanorods , 2004 .

[40]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[41]  T. Kondow,et al.  Dissociation and Aggregation of Gold Nanoparticles under Laser Irradiation , 2001 .

[42]  Naoki Toshima,et al.  Bimetallic nanoparticles—novel materials for chemical and physical applications , 1998 .

[43]  J. R. Thomas,et al.  Preparation and Magnetic Properties of Colloidal Cobalt Particles , 1966 .

[44]  H. Christenson Confinement effects on freezing and melting , 2001 .

[45]  Wangyu Hu,et al.  Melting evolution and diffusion behavior of vanadium nanoparticles , 2005 .