A Drain Current Model Based on the Temperature Effect of a-Si:H Thin-Film Transistors

Based on the differential Ohm's law and Poisson's equation, an analytical model of the drain current for a-Si:H thin-film transistors is developed. This model is proposed to elaborate the temperature effect on the drain current, which indicates that the drain current is linear with temperature in the range of 290-360 K, and the results fit well with the experimental data.

[1]  Zhang Rong,et al.  Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors , 2012 .

[2]  M. Hirano,et al.  Simple Analytical Model of On Operation of Amorphous In–Ga–Zn–O Thin-Film Transistors , 2011, IEEE Transactions on Electron Devices.

[3]  Tzong-Sheng Chang,et al.  Low-temperature characteristics of a-Si:H thin-film transistor under mechanical strain , 2010 .

[4]  T. Alford,et al.  High-Temperature Stability and Enhanced Performance of a-Si:H TFT on Flexible Substrate Due to Improved Interface Quality , 2010, IEEE Transactions on Electron Devices.

[5]  M. Nakata,et al.  Application of the Meyer–Neldel Rule to the Subthreshold Characteristics of Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[6]  M. Nakata,et al.  Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[7]  A. Nathan,et al.  Driving schemes for a-Si and LTPS AMOLED displays , 2005, Journal of Display Technology.

[8]  M. Thamilselvan,et al.  Field and temperature-dependent electronic transport parameters of amorphous and polycrystalline GaSe thin films , 2003 .

[9]  David Alan Drabold,et al.  Electron hopping between localized states: A simulation of the finite-temperature Anderson problem using density functional methods , 2003 .

[10]  A. Kapoor,et al.  Temperature dependence of carrier transport in conducting polymers: similarity to amorphous inorganic semiconductors , 2002 .

[11]  I. P. Zvyagin,et al.  DC and AC Hopping Transport in Bulk Amorphous Gallium Antimonide , 2000 .

[12]  A. Ilie,et al.  Field-enhanced generation in hydrogenated amorphous silicon , 1998 .

[13]  R. Schwarz Dispersive transport in disordered semiconductors , 1998 .

[14]  Fenq-Lin Jenq,et al.  A theoretical analysis of temperature dependence on hydrogenated amorphous silicon thin-film transistors , 1995 .

[15]  Hoheisel,et al.  Hot electrons in amorphous silicon. , 1995, Physical review letters.

[16]  A. Yakimov,et al.  Low-dimensional hopping conduction in porous amorphous silicon , 1995 .

[17]  S. Wagner,et al.  Carrier lifetime in amorphous semiconductors , 1994 .

[18]  W. Hong,et al.  Room Temperature Visible Photoluminescence from Thermally Annealed Hydrogenated Amorphous Silicon Films , 1994 .

[19]  D. Redfield,et al.  Unique correlation of the Fermi energy with the metastable defect density in amorphous silicon , 1994 .

[20]  Tsai,et al.  High-electric-field transport in a-Si:H. II. Dark conductivity. , 1992, Physical review. B, Condensed matter.

[21]  Michael S. Shur,et al.  A new analytic model for amorphous silicon thin‐film transistors , 1989 .

[22]  Kakalios,et al.  Electronic transport in doped amorphous silicon. , 1986, Physical review. B, Condensed matter.

[23]  R. Schropp,et al.  A SELF-CONSISTENT ANALYSIS OF TEMPERATURE-DEPENDENT FIELD-EFFECT MEASUREMENTS IN HYDROGENATED AMORPHOUS-SILICON THIN-FILM TRANSISTORS , 1986 .

[24]  M. Shur,et al.  Determination of Density of Localized States in Amorphous Silicon Alloys From the Low Field Conductance of Thin N-I-N Diodes , 1986 .

[25]  Nick Savvides,et al.  Effects of hydrogenation and doping on the conductivity and density of defect states in amorphous silicon , 1984 .

[26]  G. Döhler Conductivity, thermopower, and statistical shift in amorphous semiconductors , 1979 .

[27]  Morrell H. Cohen,et al.  Review of the theory of amorphous semiconductors , 1970 .

[28]  K. Murayama Hopping and radiative recombination at localized band tail states in hydro- genated amorphous silicon , 2011 .

[29]  D. Sastry,et al.  DC electrical conductivity, thermoelectric power measurements of TiO2-substituted lead vanadate glasses , 2007 .