Outrunning free radicals in room-temperature macromolecular crystallography

A systematic increase in lifetime is observed in room-temperature protein and virus crystals through the use of reduced exposure times and a fast detector.

[1]  G. Adams,et al.  Reactivity of the Hydroxyl Radical in Aqueous Solutions. , 1973 .

[2]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[3]  Elspeth F Garman,et al.  Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. , 2009, Journal of synchrotron radiation.

[4]  Ho-Kwang Mao,et al.  Hydrogen Clusters in Clathrate Hydrate , 2002, Science.

[5]  J. Kirz,et al.  An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. , 2005, Journal of Electron Spectroscopy and Related Phenomena.

[6]  M. Chance,et al.  The Beamline X28C of the Center for Synchrotron Biosciences: a national resource for biomolecular structure and dynamics experiments using synchrotron footprinting. , 2007, Journal of synchrotron radiation.

[7]  D. Stuart,et al.  Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. , 2008, Molecular cell.

[8]  V. Cherezov,et al.  Too hot to handle? Synchrotron X-ray damage of lipid membranes and mesophases. , 2002, Journal of synchrotron radiation.

[9]  E. Garman,et al.  Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. , 2009, Journal of synchrotron radiation.

[10]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[11]  R. Thorne,et al.  Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹. , 2012, Acta crystallographica. Section D, Biological crystallography.

[12]  Jesse B. Hopkins,et al.  Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. , 2011, Acta crystallographica. Section D, Biological crystallography.

[13]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[14]  Clemens Schulze-Briese,et al.  Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures , 2009, Proceedings of the National Academy of Sciences.

[15]  Elspeth F. Garman,et al.  Biological Crystallography , 2022 .

[16]  M. Symons Mechanism of Radiation Damage to Proteins and Dna – an Epr Perspective , 1999 .

[17]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[18]  E. Garman,et al.  Radioprotectant screening for cryocrystallography. , 2007, Journal of synchrotron radiation.

[19]  M. Chance,et al.  Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. , 1997, Journal of molecular biology.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  I. V. Yudin,et al.  Formation of unsaturated products during radiolysis of polyol solutions , 2009 .

[22]  M. Rossmann,et al.  Oscillation photography of radiation-sensitive crystals using a synchrotron source , 1983 .

[23]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[24]  Keiji Takamoto,et al.  Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. , 2006, Annual review of biophysics and biomolecular structure.

[25]  D. Juers,et al.  Similarities and differences in radiation damage at 100 K versus 160 K in a crystal of thermolysin. , 2011, Journal of synchrotron radiation.

[26]  Elspeth F. Garman,et al.  Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Meitian Wang,et al.  Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector , 2011, Journal of synchrotron radiation.

[28]  S. Nesterov,et al.  Radiolysis of Aqueous Solutions of Poly(ethylene oxide) at 77 K , 2005 .

[29]  Robin L. Owen,et al.  Cryocrystallography of Macromolecules , 2007 .

[30]  M. Symons,et al.  Unstable intermediates. Part LIX. Electron spin resonance studies from 4 to 77°K of hydrogen-bonded hydroxyl radicals in γ-irradiated ice , 1969 .

[31]  Farhataziz,et al.  Radiation Chemistry: Principles and Applications , 1987 .

[32]  R. Owen,et al.  Revealing low-dose radiation damage using single-crystal spectroscopy , 2011, Journal of synchrotron radiation.

[33]  Guozhong Xu,et al.  Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. , 2007, Chemical reviews.

[34]  Nicholas K. Sauter,et al.  Autoindexing with outlier rejection and identification of superimposed lattices , 2010, Journal of applied crystallography.

[35]  M. Symons,et al.  Structure and mobility of electron gain and loss centres in proteins , 1987, Nature.

[36]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[37]  Lester G. Carter,et al.  A procedure for setting up high‐throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization , 2005, Acta crystallographica. Section D, Biological crystallography.

[38]  S. Swartz,et al.  Biochemical and biophysical applications of electron spin resonance. , 1983, Methods of biochemical analysis.

[39]  D. Stuart,et al.  Insights into assembly from structural analysis of bacteriophage PRD1 , 2004, Nature.

[40]  M. J. van der Woerd,et al.  Non-invasive measurement of X-ray beam heating on a surrogate crystal sample. , 2007, Journal of synchrotron radiation.

[41]  F. A. Smith,et al.  Calculation of initial and primary yields in the radiolysis of water , 1994 .

[42]  R. Ravelli,et al.  Colouring cryo-cooled crystals: online microspectrophotometry , 2009, Journal of synchrotron radiation.

[43]  M. Symons Electron spin resonance studies of radiation damage to DNA and to proteins , 1995 .

[44]  R. Thorne,et al.  Can radiation damage to protein crystals be reduced using small-molecule compounds? , 2011, Acta crystallographica. Section D, Biological crystallography.

[45]  D. Bartels,et al.  Hydroxyl Radical Self-Recombination Reaction and Absorption Spectrum in Water Up to 350 °C , 2007 .

[46]  Bernd Schmitt,et al.  PILATUS: a two-dimensional X-ray detector for macromolecular crystallography , 2003 .

[47]  E. Garman,et al.  Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. , 2011, Journal of synchrotron radiation.

[48]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[49]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[50]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.