Classification Metrics for Improved Atmospheric Correction of Multispectral VNIR Imagery

Multispectral visible/near-infrared (VNIR) earth observation satellites, e.g., Ikonos, Quickbird, ALOS AVNIR-2, and DMC, usually acquire imagery in a few (3 – 5) spectral bands. Atmospheric correction is a challenging task for these images because the standard methods require at least one shortwave infrared band (around 1.6 or 2.2 μm) or hyperspectral instruments to derive the aerosol optical thickness. New classification metrics for defining cloud, cloud over water, haze, water, and saturation are presented to achieve improvements for an automatic processing system. The background is an ESA contract for the development of a prototype atmospheric processor for the optical payload AVNIR-2 on the ALOS platform.

[1]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[2]  Ronald J. Birk,et al.  Government programs for research and operational uses of commercial remote sensing data , 2003 .

[3]  R. Richter,et al.  De‐shadowing of satellite/airborne imagery , 2005 .

[4]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[7]  F. Agüera,et al.  Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast , 2006 .

[8]  Gerald J. Niemi,et al.  Mapping submergent aquatic vegetation in the US Great Lakes using Quickbird satellite data , 2005 .

[9]  Luis Alonso,et al.  First results from the PROBA/CHRIS hyperspectral/multiangular satellite system over land and water targets , 2005, IEEE Geoscience and Remote Sensing Letters.

[10]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[11]  Piet Stammes,et al.  Cloud Thermodynamic-Phase Determination From Near-Infrared Spectra of Reflected Sunlight , 2002 .

[12]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[13]  L. Guanter,et al.  A method for the atmospheric correction of ENVISAT/MERIS data over land targets , 2007 .

[14]  Penny Masuoka,et al.  Use of IKONOS and Landsat for malaria control in the Republic of Korea , 2003 .

[15]  S. Goetz,et al.  IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region , 2003 .

[16]  R. Richter A spatially adaptive fast atmospheric correction algorithm , 1996 .

[17]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[18]  J. Cihlar,et al.  An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images , 2002 .

[19]  T. Minor,et al.  Detecting and discriminating impervious cover with high-resolution IKONOS data using principal component analysis and morphological operators , 2003 .

[20]  Daniel Schläpfer,et al.  An automatic atmospheric correction algorithm for visible/NIR imagery , 2006 .

[21]  E. R. Stoner,et al.  Characteristic variations in reflectance of surface soils , 1981 .