On species occupancy-abundance models

Abstract One of the most pronounced generalizations in macroecology is the positive interspecific relationship between the distribution and abundance of species. Understanding of this relationship comes in two forms: statistical descriptions and insight into the biological mechanisms. Several statistical and mathematical models have been used to describe, to summarize, to interpret, and to predict the positive relationship, e.g., the Poisson, negative binomial, Nachman’s, power, and logistic models. In this study we derive a three-parameter model of which others are special cases. The unified model describes how occupancy depends on the density and the spatial distribution of species. It is shown that the unified model can be generalized from the balance between the colonization and extinction processes of a metapopulation, which provides a mechanistic basis for the model. A maximum likelihood procedure is developed to estimate the parameters, and several occupancy-abundance models are applied to data on bird and tree species distributions. It is concluded that the general model gives the best fits to the two data sets although Nachman’s model is recommended for the bird species and the logistic model for the tree species because these models have only two parameters. We further discuss how to quantify occupancy-abundance patterns and to define species-area curves in terms of occurrence.

[1]  L. L. Wolf,et al.  Dominance and the Niche in Ecological Systems , 1970, Science.

[2]  J. Kolasa,et al.  ABUNDANCE AND RANGE RELATIONSHIP IN A FRAGMENTED LANDSCAPE: CONNECTIONS AND CONTRASTS BETWEEN COMPETING MODELS , 1998 .

[3]  G. Walsberg,et al.  Physiological Diversity and Its Ecological Implications , 2001 .

[4]  N. Gotelli,et al.  The Distribution and Abundance of Tallgrass Prairie Plants: A Test of the Core-Satellite Hypothesis , 1987, The American Naturalist.

[5]  P. Schmid-Hempel,et al.  Parasites and the regional distribution of bumblebee species , 1995 .

[6]  James H. Brown,et al.  Macroecology: The Division of Food and Space Among Species on Continents , 1989, Science.

[7]  蒋志刚,et al.  Week 11: macroecology , 2021 .

[8]  J. Perry Host-Parasitoid Models of Intermediate Complexity , 1987, The American Naturalist.

[9]  Mats Gyllenberg,et al.  Uniting Two General Patterns in the Distribution of Species , 1997, Science.

[10]  H. G. Andrewartha,et al.  The distribution and abundance of animals. , 1954 .

[11]  G. Hepworth,et al.  Systematic Presence-Absence Sampling Method Applied to Twospotted Spider Mite (Acari: Tetranychidae) on Strawberries in Victoria, Australia , 1992 .

[12]  N. S. Urquhart,et al.  Patterns in the Balance of Nature , 1966 .

[13]  C. Dean Testing for Overdispersion in Poisson and Binomial Regression Models , 1992 .

[14]  Pierre Legendre,et al.  Distribution patterns of tree species in a Malaysian tropical rain forest , 1997 .

[15]  B. D. Coleman On random placement and species-area relations , 1981 .

[16]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[17]  B. Boeken,et al.  The dynamics of abundance and incidence of annual plant species during colonization in a desert , 1998 .

[18]  M. Rosenzweig,et al.  Nested species-area curves and stochastic sampling: a new theory , 1997 .

[19]  J. Lawton,et al.  Patterns in Body Size, Population Dynamics, and Regional Distribution of Bracken Herbivores , 1988, The American Naturalist.

[20]  J. Lawton,et al.  Interspecific abundance-range size relationships: An appraisal of mechanisms , 1997 .

[21]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[22]  Eizi Kuno,et al.  Sampling and Analysis of Insect Populations , 1991 .

[23]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[24]  Douglas W. Yu,et al.  Predicting species diversity in tropical forests. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Gaston,et al.  A simple transformation for sets of range sizes , 1999 .

[26]  Marc Mangel,et al.  SPECIES-AREA CURVES BASED ON GEOGRAPHIC RANGE AND OCCUPANCY , 1999 .

[27]  Christopher N. Johnson Rarity in the tropics: latitudinal gradients in distribution and abundance in Australian mammals , 1998 .

[28]  David A. Evans EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBUTIONS IN ECOLOGY , 1953 .

[29]  Kevin J Gaston,et al.  Estimating Species Abundance from Occurrence , 2000, The American Naturalist.

[30]  B. Ekbom Incidence Counts for Estimating Densities of Rhopalosiphum padi (Homoptera: Aphididae) , 1987 .

[31]  J. Kolasa,et al.  Ecological Systems in Hierarchical Perspecitive: Breaks in Community Structure and Other Consequences , 1989 .

[32]  James H. Brown On the Relationship between Abundance and Distribution of Species , 1984, The American Naturalist.

[33]  J. Willis Age and Area , 1926, The Quarterly Review of Biology.

[34]  K. Gaston The multiple forms of the interspecific abundance : distribution relationship , 1996 .

[35]  S. Hubbell,et al.  SPECIES-AREA AND SPECIES-INDIVIDUAL RELATIONSHIPS FOR TROPICAL TREES : A COMPARISON OF THREE 50-HA PLOTS , 1996 .

[36]  M. M.,et al.  Species – Area Curves based on Geographic Range and Occupancy , 1997 .

[37]  S. M. Glenn,et al.  A Hierarchical Analysis of Species' Abundance Patterns in Grassland Vegetation , 1990, The American Naturalist.

[38]  Peter Kareiva,et al.  Population dynamics in spatial habitats , 1997 .

[39]  G. Nachman ESTIMATES OF MEAN POPULATION DENSITY AND SPATIAL DISTRIBUTION OF TETRANYCHUS URTICAE (ACARINA: TETRANYCHIDAE) AND PHYTOSEIULUS PERSIMILIS (ACARINA: PHYTOSEIIDAE) BASED UPON THE PROPORTION OF EMPTY SAMPLING UNITS , 1984 .

[40]  G. Nachman,et al.  A MATHEMATICAL MODEL OF THE FUNCTIONAL RELATIONSHIP BETWEEN DENSITY AND SPATIAL DISTRIBUTION OF A POPULATION , 1981 .

[41]  M E Gilpin,et al.  Calculation of immigration and extinction curves from the species-area-distance relation. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[42]  David H. Wright,et al.  Correlations between incidence and abundance are expected by chance , 1991 .

[43]  K. Gaston,et al.  Occupancy-abundance relationships and sampling scales , 2000 .

[44]  J. Lawton,et al.  Patterns in the distribution and abundance of insect populations , 1988, Nature.

[45]  Ilkka Hanski,et al.  Metapopulation Dynamics: From Concepts and Observations to Predictive Models , 1997 .