Object Recognition from Infra Red image data for Mobile Platforms: Scale Invariant Feature Transform - A Graphical Parameter Analysis

In this paper we introduce a general purpose graphical processing unit (GPGPU) based method for performing a sweep across a set of the scale invariant feature transform (SIFT) parameters for pairs of images. The focus of the paper is the analysis of the data generated using information visualisation techniques including a cross brushing technique between parallel coordinates, scatter plots and histograms. Results have shown us the importance of carefully selecting some parameters depending upon the properties of an image pair while other parameters are shown to be robust to variation. The parameters chosen by analysis of the sweep data have then been compared to the previously published SIFT’s values and a consistent improvement in accuracy is shown.

[1]  Gang Hua,et al.  Picking the best DAISY , 2009, CVPR.

[2]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Gang Hua,et al.  Discriminant Embedding for Local Image Descriptors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[5]  Jiri Matas,et al.  Improving Descriptors for Fast Tree Matching by Optimal Linear Projection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[6]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Krishnaprasad Jagadish,et al.  Image Matching Using High Dynamic Range Images and Radial Feature Descriptors , 2008, ISVC.

[8]  Andrea Lagorio,et al.  On the Use of SIFT Features for Face Authentication , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[9]  Sharath Pankanti,et al.  Fingerprint verification using SIFT features , 2008, SPIE Defense + Commercial Sensing.

[10]  Emanuele Frontoni,et al.  A Vision-Based Guidance System for UAV Navigation and Safe Landing using Natural Landmarks , 2010, J. Intell. Robotic Syst..

[11]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[12]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[13]  Jun Luo,et al.  Person-Specific SIFT Features for Face Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[14]  Thomas Wiegand,et al.  SIFT Implementation and Optimization for General-Purpose GPU , 2007 .

[15]  Maw-Kae Hor,et al.  Modified sift descriptor for image matching under interference , 2008, ICMLC 2008.

[16]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Cheng-Yuan Tang,et al.  Modified sift descriptor for image matching under interference , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[18]  Matthew A. Brown,et al.  Learning Local Image Descriptors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Sebastiano Battiato,et al.  SIFT Features Tracking for Video Stabilization , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).