A class of one-dimensional MDS convolutional codes

A class of one-dimensional convolutional codes will be presented. They are all MDS codes, i.e. have the largest distance among all one-dimensional codes of the same length n and overall constraint length δ. Furthermore, their extended row distances are computed, and they increase with slope at least n - δ. In certain cases of the algebraic parameters, we will also derive parity check matrices of Vandermonde type for these codes. Finally, cyclicity in the convolutional sense of [8] will be discussed for our class of codes. It will turn out that they are cyclic if and only if the field element used in the generator matrix has order n. This can be regarded as a generalization of the block code case.

[1]  José Ignacio Iglesias Curto,et al.  Convolutional Goppa codes , 2003, IEEE Transactions on Information Theory.

[2]  Kees Roos On the structure of convolutional and cyclic convolutional codes , 1979, IEEE Trans. Inf. Theory.

[3]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[4]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[5]  Heide Gluesing-Luerssen On the weight distribution of convolutional codes , 2005, ArXiv.

[6]  E. Paaske,et al.  Quasi-cyclic unit memory convolutional codes , 1990, IEEE Trans. Inf. Theory.

[7]  J. Rosenthal,et al.  A state space approach for constructing MDS rate 1/n convolutional codes , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[8]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[9]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[10]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[11]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[12]  J. M. Muñoz Porras,et al.  Convolutional Codes of Goppa Type , 2003, Applicable Algebra in Engineering, Communication and Computing.

[13]  Philippe Piret A convolutional equivalent to Reed-Solomon codes , 1988 .

[14]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[15]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[16]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[17]  Bahram Honary,et al.  Communications and Coding , 1998 .

[18]  P. Piret,et al.  Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.

[19]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[20]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[21]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.

[22]  Jørn Justesen,et al.  New convolutional code constructions and a class of asymptotically good time-varying codes , 1973, IEEE Trans. Inf. Theory.

[23]  Jørn Justesen,et al.  An algebraic construction of rate 1/v -ary codes; algebraic construction (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[24]  Heide Gluesing-Luerssen,et al.  On the algebraic parameters of convolutional codes with cyclic structure , 2006 .

[25]  Av . Van Becelaere A CONVOLUTIONAL EQUIVALENT TO REED- SOLOMON CODES , 1988 .