Electrically Tunable Exciton-Plasmon Coupling in a WSe2 Monolayer Embedded in a Plasmonic Crystal Cavity.

We realize a new electroplasmonic switch based upon electrically tunable exciton-plasmon interactions. The device consists of a hexagonal boron nitride (hBN)-encapsulated tungsten diselenide (WSe2) monolayer on top of a single-crystalline silver substrate. The ultrasmooth silver substrate serves a dual role as the medium to support surface plasmon polaritons (SPPs) and the bottom gate electrode to tune the WSe2 exciton energy and brightness through electrostatic doping. To enhance the exciton-plasmon coupling, we implement a plasmonic crystal cavity on top of the hBN/WSe2/hBN/Ag heterostructure with a quality factor reaching 550. The tight confinement of the SPPs in the plasmonic cavity enables strong coupling between excitons and SPPs when the WSe2 exciton absorption is resonant with the cavity mode, leading to a vacuum Rabi splitting of up to 18 meV. This strong coupling can also be switched off with the application of a modest gate voltage that increases the doping density in the monolayer. This demonstration paves the way for new plasmonic modulators and a general device architecture to enhance light-matter interactions between SPPs and various embedded emitters.

[1]  A. Yacoby,et al.  Tuning topological superconductivity in phase-controlled Josephson junctions with Rashba and Dresselhaus spin-orbit coupling , 2019, Physical Review B.

[2]  B. Chakraborty,et al.  Control of Strong Light-Matter Interaction in Monolayer WS2 through Electric Field Gating. , 2018, Nano letters.

[3]  W. Yao,et al.  Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers , 2018, 1803.01292.

[4]  D. Baranov,et al.  Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2-Plasmonic Nanoantenna System. , 2017, Nano letters.

[5]  John X. J. Zhang,et al.  Tunable plasmonic substrates with ultrahigh Q-factor resonances , 2017, Scientific Reports.

[6]  M. Lukin,et al.  Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. , 2017, Nature nanotechnology.

[7]  R. Agarwal,et al.  Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice. , 2016, Nano letters.

[8]  J. Baumberg,et al.  A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. , 2016, Nature materials.

[9]  Daniele Sanvitto,et al.  The road towards polaritonic devices. , 2016, Nature materials.

[10]  T. Ebbesen,et al.  Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. , 2016, Nano letters.

[11]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[12]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[13]  G. M. Akselrod,et al.  Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. , 2016, Nano letters.

[14]  R. Bratschitsch,et al.  Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.

[15]  David O. Bracher,et al.  Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC. , 2015, Nano letters.

[16]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[17]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[18]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[19]  J. Grossman,et al.  Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. , 2015, Nano letters.

[20]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[21]  Xiaodong Xu,et al.  Intrinsic Exciton Linewidth in Monolayer Transition Metal Dichalcogenides , 2014, 1410.3143.

[22]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[23]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[24]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[25]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[26]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[27]  Dirk Englund,et al.  High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. , 2012, Nano letters.

[28]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[29]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[30]  D. Ballarini,et al.  All-optical polariton transistor , 2012, Nature Communications.

[31]  D. Clarke,et al.  Fabrication of thin, luminescent, single-crystal diamond membranes , 2011, 1108.0738.

[32]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[33]  Alois Renn,et al.  Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl , 2004 .

[34]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.