Hydrogen Production with a Microbial Biocathode

R E N É A . R O Z E N D A L , † , ‡ A D R I A A N W . J E R E M I A S S E , † , ‡ H U B E R T U S V . M . H A M E L E R S , * , † A N D C E E S J . N . B U I S M A N † , ‡ Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, and Wetsus, Centre for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands

[1]  E. Lojou,et al.  Electrocatalytic Reactions at Hydrogenase‐Modified Electrodes and Their Applications to Biosensors: From the Isolated Enzymes to the Whole Cells , 2004 .

[2]  A. Zehnder,et al.  Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium , 2004, Archives of Microbiology.

[3]  E. E. L O G A N Microbial Fuel Cells : Methodology and Technology † , 2022 .

[4]  L. T. Angenent,et al.  Application of Bacterial Biocathodes in Microbial Fuel Cells , 2006 .

[5]  H. Hamelers,et al.  Principle and perspectives of hydrogen production through biocatalyzed electrolysis , 2006 .

[6]  Willy Verstraete,et al.  Microbial ecology meets electrochemistry: electricity-driven and driving communities , 2007, The ISME Journal.

[7]  H. Heering,et al.  Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. , 1999, Biochemistry.

[8]  M. Fujita,et al.  Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. , 1999, Analytical chemistry.

[9]  Byung Hong Kim,et al.  Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens , 1999 .

[10]  M. Adams,et al.  Organometallic iron: the key to biological hydrogen metabolism. , 2000, Current opinion in chemical biology.

[11]  A. Kucernak,et al.  Investigations of fuel cell reactions at the composite microelectrode|solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt|Nafion® membrane interface , 2004 .

[12]  Haluk Beyenal,et al.  Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. , 2005, Environmental science & technology.

[13]  Gimenez Juan Casado,et al.  A process for producing hydrogen. , 2004 .

[14]  P. Vignais,et al.  Molecular biology of microbial hydrogenases. , 2004, Current issues in molecular biology.

[15]  Damien Feron,et al.  Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm , 2005 .

[16]  E. E. L O G A N,et al.  Electrochemically Assisted Microbial Production of Hydrogen from Acetate , 2022 .

[17]  M. Adams,et al.  Biological Hydrogen Production: Not So Elementary , 1998, Science.

[18]  B. Logan,et al.  Electricity-producing bacterial communities in microbial fuel cells. , 2006, Trends in microbiology.

[19]  E. E. L O G A N,et al.  Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane , 2022 .

[20]  A. N N E M I E K T E R H E I J N E,et al.  A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells† , 2022 .

[21]  S. Cosnier,et al.  Bioelectrocatalytic hydrogen production by hydrogenase electrodes , 2002 .

[22]  Hubertus V M Hamelers,et al.  Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. , 2007, Environmental science & technology.

[23]  Zhiguo Yuan,et al.  Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. , 2007, Environmental science & technology.

[24]  H. Hamelers,et al.  Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. , 2007, Water research.

[25]  M. Durand,et al.  Hydrogenase Activity Control at Desulfovibrio vulgaris Cell‐Coated Carbon Electrodes: Biochemical and Chemical Factors Influencing the Mediated Bioelectrocatalysis , 2002 .