Long-Wave Infrared Hyperspectral Remote Sensing of Chemical Clouds: A focus on signal processing approaches

This paper focusses on the signal processing approaches necessary to achieve the three main tasks of gas-phase remote sensing: detection of a plume, identification of its constituent gases, and quantification of the amounts present. A tutorial introduction to the radiance phenomenology is given that drives the models on which exploitation algorithms are based which is followed by the fundamental aspects of the data-exploitation problem, develop algorithms that can successfully exploit data from many different sensors, and discuss the many challenges that remain open to the signal processing community. Results using real hyperspectral data sets are also presented.

[1]  W. Calvin,et al.  SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping , 2003 .

[2]  Dimitris G. Manolakis,et al.  Hyperspectral chemical plume quantification via background radiance estimation , 2013, Defense, Security, and Sensing.

[3]  Dimitris G. Manolakis,et al.  Implications and mitigation of model mismatch and covariance contamination for hyperspectral chemical agent detection , 2013 .

[4]  Paul E. Lewis,et al.  Airborne mapping of chemical plumes in the aftermath of Hurricanes Katrina and Rita , 2006, SPIE Defense + Commercial Sensing.

[5]  David W. Warren,et al.  LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing , 1996, Optics & Photonics.

[6]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[7]  Paul G. Lucey,et al.  Detection and identification of toxic air pollutants using airborne LWIR hyperspectral imaging , 2005, SPIE Asia-Pacific Remote Sensing.

[8]  Angela M. Dean Methods and Applications of Linear Models , 1996 .

[9]  PROCEssIng magazInE IEEE Signal Processing Magazine , 2004 .

[10]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[11]  A. Gillespie Spectral mixture analysis of multispectral thermal infrared images , 1992 .

[12]  S. J. Young,et al.  An in‐scene method for atmospheric compensation of thermal hyperspectral data , 2002 .

[13]  Hugo Delgado-Granados,et al.  SO 2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques , 2008 .

[14]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Mark A. Richards,et al.  Fundamentals of Radar Signal Processing , 2005 .

[16]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[17]  D. Blumberg,et al.  Detection and identification of effluent gases by long wave infrared (LWIR) hyperspectral images , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[18]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[19]  Dimitris G. Manolakis,et al.  Algorithms for remote quantification of chemical plumes: a comparative study , 2012, Defense + Commercial Sensing.

[20]  James Theiler,et al.  Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery , 2006, SPIE Defense + Commercial Sensing.

[21]  Stephen P. Boyd,et al.  Robust minimum variance beamforming , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[22]  Martin Chamberland,et al.  Standoff gas identification and quantification from turbulent stack plumes with an imaging Fourier-transform spectrometer , 2010, Defense + Commercial Sensing.

[23]  Roland Harig,et al.  Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants , 2002, SPIE Optics East.

[24]  Henry Cox,et al.  Robust adaptive beamforming , 2005, IEEE Trans. Acoust. Speech Signal Process..

[25]  Robert Kroutil Emergency response chemical detection using passive infrared spectroscopy , 2006 .

[26]  A. Treiman,et al.  First use of an airborne thermal infrared hyperspectral scanner for compositional mapping , 2002 .

[27]  Mirela Popa,et al.  Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD) , 2005, SPIE Defense + Commercial Sensing.

[28]  Martin Chamberland,et al.  Performance of the FIRST: a long-wave infrared hyperspectral imaging sensor , 2006, SPIE Security + Defence.

[29]  Richard C. Olsen,et al.  LWIR spectral measurements of volcanic sulfur dioxide plumes , 2004, SPIE Defense + Commercial Sensing.

[30]  C. Posse,et al.  Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data , 2007, Sensors (Basel, Switzerland).

[31]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[32]  C. Gittins,et al.  Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation. , 2009, Applied optics.

[33]  Eric Truslow,et al.  False-alarm characterization in hyperspectral gas-detection applications , 2012, Optics & Photonics - Optical Engineering + Applications.

[34]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[35]  Barry M. Wise,et al.  Estimation of trace vapor concentration pathlength in plumes for remote sensing applications from hyperspectral images , 2003, SPIE Defense + Commercial Sensing.

[36]  Christoph C. Borel,et al.  Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data , 2007, SPIE Defense + Commercial Sensing.

[37]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[38]  James Theiler,et al.  Effect of signal contamination in matched-filter detection of the signal on a cluttered background , 2006, IEEE Geoscience and Remote Sensing Letters.

[39]  H. Cox,et al.  Robust DMR and multi-rate adaptive beamforming , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[40]  Dimitris G. Manolakis,et al.  Cramer-Rao bounds for long-wave infrared gaseous plume quantification , 2013 .

[41]  John Carrano Chemical and Biological Sensor Standards Study , 2005 .

[42]  Roland Harig,et al.  New scanning infrared gas imaging system (SIGIS 2) for emergency response forces , 2005, SPIE Optics East.

[43]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[44]  Tom Burr,et al.  Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion , 2008, Commun. Stat. Simul. Comput..

[45]  R. Harig,et al.  Toxic cloud imaging by infrared spectrometry: A scanning FTIR system for identification and visualization , 2001 .

[46]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[47]  Andreas F. Hayden,et al.  Remote trace gas quantification using thermal IR spectroscopy and digital filtering based on principal components of background scene clutter , 1997, Defense, Security, and Sensing.

[48]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[49]  Paul E. Lewis,et al.  Infrared detection and analysis of vapor plumes using an airborne sensor , 2002, SPIE Defense + Commercial Sensing.

[50]  Christoph C. Borel,et al.  Surface emissivity and temperature retrieval for a hyperspectral sensor , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[51]  Michael E. Winter,et al.  Three years of operation of AHI: the University of Hawaii's Airborne Hyperspectral Imager , 2001, SPIE Defense + Commercial Sensing.

[52]  Tom Visser,et al.  Infrared Spectroscopy in Environmental Analysis , 2006 .

[53]  John Cipar,et al.  Statistical characterization of hyperspectral background clutter in the reflective spectral region. , 2008, Applied optics.

[54]  H. Cox Resolving power and sensitivity to mismatch of optimum array processors , 1973 .

[55]  A. Hayden,et al.  Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra. , 1996, Applied optics.

[56]  Alan R. Gillespie,et al.  Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[57]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[58]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[59]  Eric Truslow,et al.  Performance Prediction of Matched Filter and Adaptive Cosine Estimator Hyperspectral Target Detectors , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[60]  Michael B. Miller Linear Regression Analysis , 2013 .

[61]  P. M. Chu,et al.  The NIST Quantitative Infrared Database , 1999, Journal of Research of the National Institute of Standards and Technology.

[62]  Roland Harig,et al.  Optical Remote Sensing for Characterizing the Spatial Distribution of Stack Emissions , 2008 .

[63]  Dimitris G. Manolakis,et al.  Hyperspectral detection algorithms: use covariances or subspaces? , 2009, Optical Engineering + Applications.

[64]  Mark J. Thomas Rationale and methodology for generating an airborne emergency response spectral reference library , 2004, SPIE Optics + Photonics.

[65]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..