Generating All the Minimal Separators of a Graph
暂无分享,去创建一个
[1] F. Escalante. Schnittverbände in Graphen , 1972 .
[2] Dieter Kratsch,et al. Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.
[3] Dieter Kratsch,et al. Finding All Minimal Separators of a Graph , 1994, STACS.
[4] Dieter Kratsch,et al. Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..
[5] A. Asensio. Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .
[6] Jeremy P. Spinrad,et al. On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..
[7] Weifa Liang,et al. Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..
[8] A. Berry. Désarticulation d'un graphe , 1998 .
[9] Anne Berry,et al. Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..
[10] Ioan Todinca,et al. Minimal Triangulations for Graphs with "Few" Minimal Separators , 1998, ESA.
[11] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..
[12] Anne Berry,et al. A wide-range efficient algorithm for minimal triangulation , 1999, SODA '99.
[13] Lhouari Nourine,et al. A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..
[14] Aspects algorithmiques des triangulations minimales des graphes , 1999 .
[15] J. Bordat,et al. ORTHOTREILLIS ET SÉPARABILITÉ DANS UN GRAPHE NON ORIENTÉ , 1999 .