Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.

[1]  J. Stone,et al.  Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies , 2017, 1708.02946.

[2]  A. Dorodnitsyn,et al.  Parsec-scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs , 2017, 1705.03975.

[3]  Jian-Min Wang,et al.  Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective , 2017, 1704.04345.

[4]  B. Freytag,et al.  Global 3D radiation-hydrodynamics models of AGB stars - Effects of convection and radial pulsations on atmospheric structures , 2017, 1702.05433.

[5]  M. Bentz,et al.  Recalibration of the MBH–σ⋆ Relation for AGN , 2016, 1612.02815.

[6]  T. Kozasa,et al.  Dust formation and mass loss around intermediate-mass AGB stars with initial metallicity $Z_{ini} <= 10^{-4}$ in the early Universe - I. Effect of surface opacity on stellar evolution and the dust-driven wind , 2016, 1612.01695.

[7]  D. Proga,et al.  Irradiation of Astrophysical Objects - SED and Flux Effects on Thermally Driven Winds , 2016, 1610.04292.

[8]  V. Karas,et al.  A TEST OF THE FORMATION MECHANISM OF THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI , 2016, 1610.00420.

[9]  V. Karas,et al.  ELECTRICALLY CHARGED MATTER IN PERMANENT ROTATION AROUND MAGNETIZED BLACK HOLES: A TOY MODEL FOR SELF-GRAVITATING FLUID TORI , 2016, 1608.03427.

[10]  G. Ferland,et al.  THE INTERMEDIATE-LINE REGION IN ACTIVE GALACTIC NUCLEI , 2016, 1606.00284.

[11]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. V. A NEW SIZE–LUMINOSITY SCALING RELATION FOR THE BROAD-LINE REGION , 2016, 1604.06218.

[12]  M. Umemura,et al.  Sub-parsec-scale dynamics of a dusty gas disc exposed to anisotropic AGN radiation with frequency-dependent radiative transfer , 2016, 1604.03372.

[13]  K. Eriksson,et al.  Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations , 2016, 1603.06735.

[14]  D. Proga,et al.  On the efficient acceleration of clouds in active galactic nuclei , 2016, 1603.01915.

[15]  R. Webster,et al.  Black Hole Mass Estimation: How Good is the Virial Estimate? , 2016, Publications of the Astronomical Society of Australia.

[16]  A. Barth,et al.  REVERBERATION MAPPING OF THE BROAD LINE REGION: APPLICATION TO A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION , 2016, 1601.05181.

[17]  A. Capetti,et al.  The naked nuclei of low ionization nuclear emission line regions , 2015 .

[18]  S. Kozłowski Empirical Conversions of Broad-Band Optical and Infrared Magnitudes to Monochromatic Continuum Luminosities for Active Galactic Nuclei , 2015, 1504.05960.

[19]  M. Nikołajuk,et al.  The dust origin of the Broad Line Region and the model consequences for AGN unification scheme , 2014, 1409.7312.

[20]  L. Ho,et al.  SELF-SHADOWING EFFECTS OF SLIM ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI: THE DIVERSE APPEARANCE OF THE BROAD-LINE REGION , 2014, 1410.5285.

[21]  M. Bilicki,et al.  SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line , 2014, 1408.1520.

[22]  Astrophysics,et al.  THE BLACK HOLE MASS SCALE OF CLASSICAL AND PSEUDO BULGES IN ACTIVE GALAXIES , 2014, 1406.6137.

[23]  Y. Yoshii,et al.  REVERBERATION MEASUREMENTS OF THE INNER RADIUS OF THE DUST TORUS IN 17 SEYFERT GALAXIES , 2014, 1406.2078.

[24]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[25]  H. Ebeling,et al.  Absorption features in the quasar HS 1603 + 3820 II. Distance to the absorber obtained from photoionisation modelling , 2013, 1303.5004.

[26]  L. Ho,et al.  A BAYESIAN APPROACH TO ESTIMATE THE SIZE AND STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI USING REVERBERATION MAPPING DATA , 2013, 1310.3907.

[27]  A. Barth,et al.  ON THE VIRIALIZATION OF DISK WINDS: IMPLICATIONS FOR THE BLACK HOLE MASS ESTIMATES IN ACTIVE GALACTIC NUCLEI , 2013, The Astrophysical Journal.

[28]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[29]  Dmitry Semenov,et al.  Chemistry in protoplanetary disks. , 2013, Chemical reviews.

[30]  Radiation-driven Fountain and Origin of Torus around Active Galactic Nuclei , 2012, 1208.5272.

[31]  M. Nikołajuk,et al.  Probing broad-line region of the weak line quasar SDSS J094533.99+100950.1 , 2012 .

[32]  K. Korista,et al.  The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus , 2012, 1207.6339.

[33]  H. Netzer,et al.  Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei , 2011, 1110.5326.

[34]  V. Karas,et al.  Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes , 2011, 1110.4843.

[35]  J. Baldwin,et al.  STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. I. METALLICITY GRADIENTS IN BROAD-LINE REGIONS , 2011, 1107.3620.

[36]  Sei‐ichiro Watanabe,et al.  Sublimation temperature of circumstellar dust particles and its importance for dust ring formation , 2011, 1104.5627.

[37]  Pas,et al.  On different types of instabilities in black hole accretion discs. Implications for X-ray binaries and AGN , 2011, 1102.3257.

[38]  T. Treu,et al.  GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA , 2011, 1101.4952.

[39]  Krzysztof Hryniewicz,et al.  The origin of the broad line region in active galactic nuclei , 2010, 1010.6201.

[40]  M. Elvis,et al.  “Comets” orbiting a black hole , 2010, 1005.3365.

[41]  M. Elvis,et al.  A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei , 2009, 0911.0958.

[42]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[43]  M. Gaskell,et al.  What broad emission lines tell us about how active galactic nuclei work , 2009, 0908.0386.

[44]  E. Sedlmayr,et al.  Dust-driven Winds and Mass Loss of C-rich AGB Stars with subsolar Metallicities , 2008, 0805.3656.

[45]  J. Krolik AGN Obscuring Tori Supported by Infrared Radiation Pressure , 2007, astro-ph/0702396.

[46]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[47]  Ran Wang,et al.  Estimate black hole masses of AGNs using ultraviolet emission line properties , 2005, astro-ph/0512609.

[48]  E. Quataert,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005, astro-ph/0503027.

[49]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[50]  Berkeley,et al.  The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope , 2004, astro-ph/0405369.

[51]  J. Kuraszkiewicz,et al.  Constraints for the accretion disk evaporation rate in AGN from the existence of the Broad Line Region , 2004, astro-ph/0403507.

[52]  D. Grupe A Complete Sample of Soft X-Ray-selected AGNs. II. Statistical Analysis , 2004, astro-ph/0401167.

[53]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[54]  E. Sedlmayr,et al.  On the gas temperature in the shocked circumstellar envelopes of pulsating stars III. Dynamical models for AGB star winds including time-dependent dust formation and non-LTE cooling , 2003 .

[55]  B. Czerny,et al.  The role of the central stellar cluster in active galactic nuclei - I. Semi-analytical model , 2002, astro-ph/0203226.

[56]  R. Zamanov,et al.  Average Quasar Spectra in the Context of Eigenvector 1 , 2002, astro-ph/0201362.

[57]  V. Karas,et al.  Orbital decay of satellites crossing an accretion disc , 2001, astro-ph/0107232.

[58]  M. Véron-Cetty,et al.  A spectrophotometric atlas of narrow-line seyfert 1 galaxies , 2001, astro-ph/0104151.

[59]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[60]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[61]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[62]  G. Pojmański,et al.  Vertical structure of accretion discs with hot coronae in active galactic nuclei , 1998, astro-ph/9811380.

[63]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[64]  Julian P. Osborne,et al.  RE 1034+39: a high-state Seyfert galaxy? , 1995 .

[65]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[66]  G. Wasserburg,et al.  Molecular equilibria and condensation temperatures in carbon-rich gases , 1995 .

[67]  Stirling A. Colgate,et al.  Star-Disk Collisions and the Origin of the Broad Lines in Quasars , 1994 .

[68]  M. Eracleous,et al.  Doubled-peaked emission lines in active galactic nuclei , 1994 .

[69]  H. Netzer,et al.  Dust in the Narrow-Line Region of Active Galactic Nuclei , 1993 .

[70]  D. Vokrouhlický,et al.  In the vicinity of a rotating black hole: a fast numerical code for computing observational effects , 1992 .

[71]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[72]  R. Blandford,et al.  Magnetic acceleration of broad emission-line clouds in active galactic nuclei , 1992 .

[73]  H. Netzer,et al.  Massive thin accretion discs – I. Calculated spectra , 1989 .

[74]  G. H. Bowen,et al.  Dynamical modeling of long-period variable star atmospheres , 1988 .

[75]  Martin Elvis,et al.  Constraints on quasar accretion disks from the optical/ultraviolet/soft X-ray big bump , 1987 .

[76]  D. Osterbrock,et al.  The spectra of narrow-line Seyfert 1 galaxies , 1985 .

[77]  H. Netzer,et al.  The spectrum of the Seyfert galaxy NGC 3516. , 1977 .