Numerical comparison of nonlinear subgridscale models via adaptive mesh refinement

In this paper, we provide a method of evaluating the efficacy of nonlinear subgridscale models for use in the large eddy simulation of incompressible viscous flow problems. We compare subgridscale ''artificial'' viscosity models using a posteriori error estimation and adaptive mesh refinement. Specifically, we compare @a-Laplacian based subgridscale models and discuss the benefits and limitations of different values of @a for some standard benchmark problems for the Navier-Stokes equations.

[1]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[2]  Rodolfo Bermejo,et al.  A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..

[3]  Wenbin Liu,et al.  Quasi-Norm Local Error Estimators for p-Laplacian , 2001, SIAM J. Numer. Anal..

[4]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[5]  Joel H. Ferziger,et al.  Improved Methods for Large Eddy Simulations of Turbulence , 1979 .

[6]  Qiang Du,et al.  Analysis of a Ladyzhenskaya model for incompressible viscous flow , 1991 .

[7]  P Sagaut,et al.  Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series , 2002 .

[8]  Vincent J. Ervin,et al.  A posteriori error estimation and adaptive computation of viscoelastic fluid flow , 2005 .

[9]  William J. Layton,et al.  Adaptive Defect-Correction Methods for Viscous Incompressible Flow Problems , 2000, SIAM J. Numer. Anal..

[10]  Traian Iliescu,et al.  Genuinely nonlinear models for convection-dominated problems , 2004 .

[11]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[12]  O. A. Ladyzhenskai︠a︡ Boundary value problems of mathematical physics , 1967 .

[13]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[14]  Qiang Du,et al.  Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow , 1990 .

[15]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[16]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[17]  Volker John,et al.  Analysis of Numerical Errors in Large Eddy Simulation , 2002, SIAM J. Numer. Anal..

[18]  William J. Layton A Nonlinear, Subgridscale Model for Incompressible viscous Flow Problems , 1996, SIAM J. Sci. Comput..