Entangled two-dimensional coordination networks: a general survey.

Survey Lucia Carlucci,*,† Gianfranco Ciani,† Davide M. Proserpio,*,†,‡ Tatiana G. Mitina,‡ and Vladislav A. Blatov*,‡,§ †Dipartimento di Chimica, Universita ̀ degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy ‡Samara Center for Theoretical Materials Science, Samara State University, Ac. Pavlov Street 1, Samara 443011, Russia Chemistry Department, Faculty of Science, King Abdulaziz University, Post Office Box 80203, Jeddah 21589, Saudi Arabia

[1]  Yun-xia Che,et al.  Polyrotaxane-like and Interpenetrating Metal−Organic Frameworks (MOFs) Constructed from Biphenyl-4,4′-Dicarboxylate and Bis(imidazole) Ligand , 2009 .

[2]  Michael O'Keeffe,et al.  Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology , 2010 .

[3]  R. E. Marsh,et al.  The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid) , 1969 .

[4]  Z. Su,et al.  An exceptional 54-fold interpenetrated coordination polymer with 10(3)-srs network topology. , 2011, Journal of the American Chemical Society.

[5]  Rui Zhang,et al.  Unusual parallel entanglement of metal–organic 2D frameworks with coexistence of polyrotaxane, polycatenane and interdigitation , 2009 .

[6]  Nils A. Baas,et al.  New states of matter suggested by new topological structures , 2010, Int. J. Gen. Syst..

[7]  C. Su,et al.  Anion-tuned sorption and catalytic properties of a soft metal–organic solid with polycatenated frameworks , 2011 .

[8]  Wenbin Lin,et al.  A novel coordination polymer containing both interdigitated 1D chains and interpenetrated 2D grids. , 2002, Inorganic chemistry.

[9]  Z. Su,et al.  Synthesis, Characterization, and Luminescence of Two New Zinc(II) Coordination Polymers Constructed by 5-(4-Carboxybenzyloxy)Isophthalic Acid Ligand† , 2011 .

[10]  Jin Hu,et al.  Syntheses, Characterizations, and Properties of Six Metal−Organic Complexes Based on Flexible Ligand 5-(4-Pyridyl)-methoxyl Isophthalic Acid , 2010 .

[11]  Shourong Zhu,et al.  Metal-organic frameworks constructed from 2,4,6-Tris(4-pyridyl)-1,3,5-triazine. , 2008, Inorganic chemistry.

[12]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[13]  Zhenda Lu,et al.  Organic–Inorganic Hybrid Coordination Polymers Based on 6-Methylpyridine-2,4-dicarboxylic Acid N-Oxide (MPDCO) Ligand: Preparations, Interpenetrating Structures, and Magnetic and Luminescent Properties , 2007 .

[14]  C. Su,et al.  An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets , 2009 .

[15]  Vladislav A. Blatov,et al.  Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database , 2004 .

[16]  S. Du,et al.  A novel Borromean (6,3) net assembled by nest-shaped clusters {WOS3Cu3} as knots , 2007 .

[17]  Guanghua Li,et al.  Hydrothermal synthesis and characterization of metal–organic networks with helical units in a mixed ligand system , 2008 .

[18]  Junliang Sun,et al.  Rational construction of 2D and 3D borromean arrayed organic crystals by hydrogen-bond-directed self-assembly. , 2009, Angewandte Chemie.

[19]  Zu-Jin Lin,et al.  A unique 2D → 3D polycatenation cobalt(II)-based molecule magnet showing coexistence of paramagnetism and canted antiferromagnetism. , 2011, Chemical communications.

[20]  C. Kepert,et al.  A thermal spin transition in a nanoporous iron(II) coordination framework material. , 2007, Angewandte Chemie.

[21]  Jianping Ma,et al.  Crown-ether-like Pb(II)-metal framework with dual- and bimodal emissive properties based on its photochromic precursor by leaching. , 2009, Chemistry.

[22]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[23]  Yu Zhang,et al.  Synthesis, structure and characterization of new 1D and 2D Ni(II) coordination polymers , 2009 .

[24]  Xiao‐He Miao,et al.  Regiocontrolled [2 + 2] photodimerization of Cd(II) metal complexes in both solution and solid state. , 2010, Dalton transactions.

[25]  X. Ren,et al.  Temperature-induced assembly of MOF polymorphs: Syntheses, structures and physical properties , 2012 .

[26]  X. Ren,et al.  Three zinc(II) complexes constructed from aromatic dicarboxylate and 1,4-bis((2-(pyridin-2-yl)-1H-imidazol-1-yl)methyl)benzene: Syntheses, crystal structures and luminescent properties , 2010 .

[27]  S. Banfi,et al.  An Unusual Three-Dimensional Coordination Network Formed by Parallel Polycatenation of Two-Fold Interpenetrated (6,3) Layers Based on a Novel Three-Connecting Ligand , 2004 .

[28]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[29]  D. Proserpio Topological crystal chemistry: Polycatenation weaves a 3D web. , 2010, Nature chemistry.

[30]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[31]  A. Fletcher,et al.  Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni2(4,4'-bipyridine)3(NO3)4: guest modification of host sorption behavior. , 2001, Journal of the American Chemical Society.

[32]  V. Blatov,et al.  Interpenetrated Three-Dimensional Networks of Hydrogen-Bonded Organic Species: A Systematic Analysis of the Cambridge Structural Database , 2008 .

[33]  Peng Cheng,et al.  Solvent-induced single-crystal to single-crystal transformation of a 2D coordination network to a 3D metal-organic framework greatly enhances porosity and hydrogen uptake. , 2012, Chemical communications.

[34]  K. Mislow,et al.  On Borromean links , 1994 .

[35]  V. Robins,et al.  Periodic entanglement I: networks from hyperbolic reticulations , 2013 .

[36]  E. Wang,et al.  Two 2D → 3D entangled coordination polymers with polycatenated and polythreaded features based on 44-sql layers , 2012 .

[37]  B. Patrick,et al.  Gold-gold interactions as crystal engineering design elements in heterobimetallic coordination polymers. , 2001, Inorganic chemistry.

[38]  Xintao Wu,et al.  A novel mixed-ligand molecular bilayer generated by self-assembly of “T-shaped” moieties, displaying an unusual entanglement , 2002 .

[39]  G. P. Moss,et al.  Nomenclature for rotaxanes and pseudorotaxanes (IUPAC Recommendations 2008) , 2008 .

[40]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[41]  Junliang Sun,et al.  Design and construction of an organic crystal with a novel interpenetrated n-Borromean linked topology. , 2010, Chemical communications.

[42]  G. Lloyd,et al.  Construction of one- and two-dimensional coordination polymers using ditopic imidazole ligands , 2006 .

[43]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[44]  Qiang Xu,et al.  Structural Investigation of Flexible 1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene Ligand in Keggin-Based Polyoxometalate Frameworks , 2009 .

[45]  J. Steed,et al.  A "compartmental" Borromean weave coordination polymer exhibiting saturated hydrogen bonding to anions and water cluster inclusion. , 2008, Angewandte Chemie.

[46]  Yaoyu Wang,et al.  Control over multifarious entangled Co(II) metal–organic frameworks: role of steric bulk and molar ratio of organic ligands , 2012 .

[47]  K. Chapman,et al.  Elucidating the mechanism of a two-step spin transition in a nanoporous metal-organic framework. , 2008, Journal of the American Chemical Society.

[48]  J. Vittal,et al.  Coordination networks of Ag(I) and N,N′- bis(3-pyridinecarboxamide)-1,6-hexane: structures and anion exchange , 2002 .

[49]  Jie Zhang,et al.  2D flexible metal-organic frameworks with [Cd2(μ2-X)2](X = Cl or Br) units exhibiting selective fluorescence sensing for small molecules. , 2011, Chemical Communications.

[50]  Chunhua Yan,et al.  Copper(II) and cobalt(II) coordination polymers with azido ions and 1,3-bis(4′-pyridyl)propane , 2006 .

[51]  Wei‐Xiong Zhang,et al.  Spin canting and metamagnetism in a 3D homometallic molecular material constructed by interpenetration of two kinds of cobalt(II)-coordination-polymer sheets. , 2005, Angewandte Chemie.

[52]  Y. Gong,et al.  Synthesis, structural characterization and anion-sensing studies of metal(II) complexes based on 3,3',4,4'-oxydiphthalate and N-donor ligands. , 2012, Dalton transactions.

[53]  Michael O'Keeffe,et al.  What do we know about three-periodic nets? , 2005 .

[54]  C. Frost,et al.  Solid state interconversion of cages and coordination networks via conformational change of a semi-rigid ligand. , 2010, Chemical communications.

[55]  R. Robson,et al.  The Structure of [Zn(bix)2(NO3)2]·4.5 H2O (bix = 1,4‐Bis(imidazol‐1‐ylmethyl)benzene): A New Type of Two‐Dimensional Polyrotaxane , 1997 .

[56]  T. Lu,et al.  Variations of structures and gas sorption properties of three coordination polymers induced by fluorine atom positions in azamacrocyclic ligands. , 2012, Inorganic chemistry.

[57]  H. Raubenheimer,et al.  Borromean sheets assembled by self-supporting argentophilic interactions. , 2005, Chemical communications.

[58]  A. Karmakar,et al.  Coordination Polymers of 5-(2-Amino/Acetamido-4-carboxyphenoxy)-benzene-1,3-dioic Acids with Transition Metal Ions: Synthesis, Structure, and Catalytic Activity , 2011 .

[59]  Z. Su,et al.  Syntheses and characterizations of three coordination polymers based on dipyridylbenzoates and 1,4-bezenedicarboxylate , 2009 .

[60]  W. W. Shum,et al.  Interpenetrating‐Lattice‐Structured Magnets Exhibiting Anomalous Magnetic Properties , 2005 .

[61]  P. Dastidar,et al.  A Borromean Weave Coordination Polymer Sustained by Urea−Sulfate Hydrogen Bonding and Its Selective Anion Separation Properties , 2010 .

[62]  H. Hou,et al.  A Hydroscopic Self-Catenated Net Formed by Borromean Layers Interlocked by Ferrocenyl Bridging Ligands , 2010 .

[63]  Christine L. Prentice,et al.  Coordination networks based on multitopic ligands and silver(I) salts: A study of network connectivity and topology as a function of counterion , 1996 .

[64]  David J. Williams,et al.  [Mn(C18H16N2O2)3](ClO4)2: A Polymeric 34- and 68-Membered Metallacyclic Network Forming a Novel Woven Polycatenated Structure† , 1995 .

[65]  Youngmee Kim,et al.  Light-induced self-assemblies suitable for photodimerization and their light-induced [2+2] cycloaddition: Light as a control factor of crystal growth , 2011 .

[66]  P. Metrangolo,et al.  Metric engineering of supramolecular Borromean rings. , 2006, Chemical communications.

[67]  M. Kiskin,et al.  Structural Flexibility and Sorption Properties of 2D Porous Coordination Polymers Constructed from Trinuclear Heterometallic Pivalates and 4,4′‐Bipyridine , 2011 .

[68]  S. Kitagawa,et al.  Functional Hybrid Porous Coordination Polymers , 2014 .

[69]  Y. Gong,et al.  Metal(II) Coordination Polymers Derived from Bis-pyridyl-bis-amide Ligands and Carboxylates: Syntheses, Topological Structures, and Photoluminescence Properties , 2011 .

[70]  Canzhong Lu,et al.  Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. , 2010, Nature chemistry.

[71]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[72]  P. Cheng,et al.  A New Type of Entanglement Involving Ribbons of Rings and Two Different Kinds of 2D (4,4) Networks (2D + 2D + 1D) Polycatenated in a 3D Supramolecular Architecture , 2010 .

[73]  Yan‐Qiong Sun,et al.  Two-Dimensional Noninterpenetrating Transition Metal Coordination Polymers with Large Honeycomb-like Hexagonal Cavities Constructed from a Carboxybenzyl Viologen Ligand , 2005 .

[74]  Wenbin Lin,et al.  Rational Design of Nonlinear Optical Materials Based on 2D Coordination Networks , 2001 .

[75]  Chen,et al.  Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties. , 1999, Angewandte Chemie.

[76]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[77]  H. Noguchi,et al.  Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[78]  Z. Tian,et al.  Flexible ligand, structural, and topological diversity : Isomerism in Zn(NO3)2 coordination polymers , 2007 .

[79]  M. Du,et al.  Unique Zn(II) coordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tecton and benzenedicarboxylates. , 2010, Chemical communications.

[80]  Michael O'Keeffe,et al.  The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation , 2003 .

[81]  C. Su,et al.  Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated Cd(II) grid network. , 2009, Chemistry.

[82]  Davide M. Proserpio,et al.  Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: re-examination of some puzzling networks , 2003 .

[83]  H. Noguchi,et al.  Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO(2) molecules. , 2006, Nano letters.

[84]  D. Kuang,et al.  Self-assembly of 2D Borromean networks through hydrogen-bonding recognition. , 2009, Chemical communications.

[85]  Z. Su,et al.  Self-assembly of 2D-->2D interpenetrating coordination polymers showing polyrotaxane- and polycatenane-like motifs: influence of various ligands on topological structural diversity. , 2008, Inorganic chemistry.

[86]  Jie‐Peng Zhang,et al.  Low-dimensional porous coordination polymers based on 1,2-bis(4-pyridyl)hydrazine: from structure diversity to ultrahigh CO2/CH4 selectivity. , 2012, Inorganic chemistry.

[87]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[88]  Michael J. Zaworotko,et al.  Superstructural diversity in two dimensions: crystal engineering of laminated solids , 2001 .

[89]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[90]  M. Zaworotko,et al.  18-Fold Interpenetration and Concomitant Polymorphism in the 2:3 Co-Crystal of Trimesic Acid and 1,2-Bis(4-pyridyl)ethane† , 2005 .

[91]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[92]  S. Rizzato,et al.  Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional network in the coordination polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe = 1,2-bis(4-pyridyl)ethane] , 2000 .

[93]  K. Chapman,et al.  Guest tunable structure and spin crossover properties in a nanoporous coordination framework material. , 2009, Journal of the American Chemical Society.

[94]  Di Sun,et al.  A porous metal-organic framework (MOF) with unusual 2D→3D polycatenation based on honeycomb layers. , 2012, Dalton transactions.

[95]  D. Proserpio,et al.  Supramolecular isomers in the same crystal: a new case involving two different types of layers polycatenated in the 3D architecture of [Cu(bix)2(SO4)]·7.5H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene] , 2004 .

[96]  Q. Yao,et al.  Borromean-entanglement-driven assembly of porous molecular architectures with anion-modified pore space. , 2012, Chemistry.

[97]  M. Mahon,et al.  Silver coordination networks and cages based on a semi-rigid bis(isoxazolyl) ligand. , 2011, Dalton transactions.

[98]  Dong Liu,et al.  How do substituent groups in the 5-position of 1,3-benzenedicarboxylate affect the construction of supramolecular frameworks? , 2010 .

[99]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[100]  K. Chapman,et al.  Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(II) spin-crossover framework. , 2008, Journal of the American Chemical Society.

[101]  X. You,et al.  Cuprous iodide coordination polymers (CuI)x(L)y·z(solvent) built on linear thioether linkers , 2011 .

[102]  D. Proserpio,et al.  Three-dimensional architectures of intertwined planar coordination polymers: the first case of interpenetration involving two different bidimensional polymeric motifs , 1998 .

[103]  K. Yoshizawa,et al.  Mixed-metal complex [Fe(bipe)(Au(CN)2)2·MeOH] with gold clusters: a novel two-dimensional polyrotaxane net clipped by aurophilic interaction , 2010 .

[104]  Davide M. Proserpio,et al.  New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp , 2002 .

[105]  Ai-Ling Cheng,et al.  Novel 2D → 2D Entanglement Pattern in the Coordination Network with Both Polyrotaxane and Polycatenane Features , 2010 .

[106]  M. Du,et al.  CoII and ZnII Coordination Frameworks with Benzene-1,2,3-tricarboxylate Tecton and Flexible Dipyridyl Co-Ligand: A New Type of Entangled Architecture and a Unique 4-Connected Topological Network , 2011 .

[107]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[108]  W. Fischer,et al.  Interpenetration of homogeneous sphere packings and of two-periodic layers of spheres. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[109]  Z. Su,et al.  Unusual parallel and inclined interlocking modes in polyrotaxane-like metal-organic frameworks. , 2008, Chemical communications.

[110]  S. Batten,et al.  Two coordination polymers displaying unusual threefold 1D→1D and threefold 2D→3D interpenetration topologies , 2009 .

[111]  Hong-Cai Zhou,et al.  Interpenetration control in metal–organic frameworks for functional applications , 2013 .

[112]  Q. Yao,et al.  Supramolecular Borromean sheet consisting of threefold parallel interwoven 44-sql layers assembled by a flexible bipyridinium ligand , 2009 .

[113]  Stuart R. Batten,et al.  Coordination polymers : Molecular crystals , 2001 .

[114]  Stuart R. Batten,et al.  Polyrotaxane metal-organic frameworks (PMOFs). , 2012, Chemical communications.

[115]  Qiong Ye,et al.  A second-order nonlinear optical material prepared through in situ hydrothermal ligand synthesis. , 2005, Inorganic chemistry.

[116]  N. Hu,et al.  Topological Diversity of Coordination Polymers Containing the Rigid Terephthalate and a Flexible N,N'-Type Ligand : Interpenetration, Polyrotaxane, and Polythreading , 2008 .

[117]  C. Su,et al.  Three-fold parallel interlocking of 2-D brick-wall networks showing ladder-like unsymmetrical Borromean links , 2006 .

[118]  Z. Su,et al.  pH-dependent self-assembly of divalent metals with a new ligand containing polycarboxylate: syntheses, crystal structures, luminescent and magnetic properties , 2010 .

[119]  M. P. Suh,et al.  A new metal-organic open framework consisting of threefold parallel interwoven (6,3) nets. , 2003, Inorganic chemistry.

[120]  S. Batten,et al.  An unusual 3D polycatenane motif generated by the 2D → 2D parallel → 3D parallel interpenetration of (4,4) sheets , 2009 .

[121]  Mitsuru Kondo,et al.  Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties , 2000 .

[122]  Jian Zhang,et al.  One-pot synthesis of two isomeric zinc complexes with unusual polycatenation motifs , 2007 .

[123]  Qiang Xu,et al.  Investigation of flexible organic ligands in the molybdate system: delicate influence of a peripheral cluster environment on the isopolymolybdate frameworks. , 2009, Inorganic chemistry.

[124]  Keith A. Hirsch Crystallization of 3-cyanophenyl 4-cyanobenzoate with AgSbF6: a polar coordination network based on the crisscrossing of intertwined helices , 1998 .

[125]  H. Kanoh,et al.  Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions , 2010, International journal of molecular sciences.

[126]  X. Ren,et al.  An unusual two-dimensional 2-fold interpenetrating metal-organic framework based on tetranuclear manganese(II) clusters: Synthesis, structure and magnetic properties , 2011 .

[127]  David Farrusseng,et al.  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage , 2011 .

[128]  A. Xiao,et al.  Two New Three-Dimensional Networks Constructed on Polyoxovanadates , 2007 .

[129]  W. Fischer,et al.  Types of sphere packings for crystallographic point groups, rod groups and layer groups , 1978 .

[130]  Fei Liu,et al.  Coordination Networks Based on Tetrahedral Silane Building Blocks: Influence of the Anion on Structures Adopted by Ag+−Si(p-C6H4CN)4 Arrays , 1997 .

[131]  C. Su,et al.  Formation of two (6,3) networks showing structural diversity, Borromean topology and conformational chirality in the same crystal. , 2007, Chemical communications.

[132]  Z. Su,et al.  Unusual microporous polycatenane-like metal-organic frameworks for the luminescent sensing of Ln3+ cations and rapid adsorption of iodine. , 2012, Chemical communications.

[133]  U. Mueller,et al.  A family of 2D and 3D coordination polymers involving a trigonal tritopic linker. , 2012, Dalton transactions.

[134]  M. Kiskin,et al.  Topology Control of Porous Coordination Polymers by Building Block Symmetry , 2010 .

[135]  Di Sun,et al.  Achieving a rare breathing behavior in a polycatenated 2D to 3D net through a pillar-ligand extension strategy. , 2014, Chemistry.

[136]  Yang-guang Li,et al.  Entangled 3D metal-organic architectures from the self-assembly of mixed ligands and transition-metal ions , 2008 .

[137]  A. Cheetham,et al.  Dimensionality Trends in Metal−Organic Frameworks Containing Perfluorinated or Nonfluorinated Benzenedicarboxylates , 2010 .

[138]  V. Blatov,et al.  Underlying nets in three-periodic coordination polymers: topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database , 2011 .

[139]  S. Rizzato,et al.  New architectures from the self-assembly of MIISO4 salts with bis(4-pyridyl) ligands. The first case of polycatenation involving three distinct sets of 2D polymeric (4,4)-layers parallel to a common axis , 2003 .

[140]  H. Hou,et al.  Novel interpenetrating and non-interpenetrating structures based on semi-rigid 4,4′-biphenyl-based ligand , 2010 .

[141]  D. Proserpio,et al.  Ligand isomerism-controlled structural diversity of cadmium(II) perchlorate coordination polymers containing dipyridyladipoamide ligands , 2009 .

[142]  Bin Zhao,et al.  Binuclear, 2D grid and 3D interlocking coordination polymers based on 1,2,4,5-benzenetetracarboxylic acid and 4,4′-azobispyridine , 2010 .

[143]  H. Hou,et al.  A Case Study of ZnII-bmb Meso-Helical Coordination Polymers upon the Spacer Angles and Lengths of Dicarboxylate Coligands , 2011 .

[144]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[145]  Zhi-hui Wang,et al.  A series of coordination polymers based on reduced Schiff base multidentate anions and bis(imidazole) ligands: syntheses, structures and photoluminescence , 2011 .

[146]  Eugeny V. Alexandrov,et al.  A topological method for the classification of entanglements in crystal networks , 2012 .

[147]  Vladislav A. Blatov,et al.  Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs , 2008 .

[148]  K. Kaneko,et al.  Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals , 2001 .

[149]  Lin-pei Jin,et al.  Assembly and structures of five new Cu(II) complexes based on the V-shaped building block [Cu(dbsf)] , 2007 .

[150]  A. N. Ley,et al.  Threaded structure and blue luminescence of (CuCN)20(Piperazine)7. , 2007, Chemical communications.

[151]  P. K. Bharadwaj,et al.  A Dynamically Entangled Coordination Polymer: Synthesis, Structure, Luminescence, Single-Crystal-to-Single-Crystal Reversible Guest Inclusion and Structural Transformation , 2010 .

[152]  Z. Xue,et al.  Three self-penetrated, interlocked, and polycatenated supramolecular isomers via one-pot synthesis and crystallization. , 2012, Chemical communications.

[153]  Guo‐Ping Yang,et al.  Investigation on the prime factors influencing the formation of entangled metal–organic frameworks , 2013 .

[154]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[155]  Guanghua Li,et al.  Design and construction of coordination polymers based on 2,2'-dinitro-4,4'-biphenyldicarboxylate and semi-rigid N-donor ligands: diverse structures and magnetic properties. , 2012, Dalton transactions.

[156]  Stuart R. Batten,et al.  Copper(I) dicyanamide coordination polymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration , 2000 .

[157]  Dario Braga,et al.  Making crystals by design : methods, techniques and applications , 2007 .

[158]  V. Blatov,et al.  Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD) , 2005 .

[159]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[160]  X. Ren,et al.  Two zinc(II) supramolecular isomers of square grid networks formed by two flexible ligands: syntheses, structures and nonlinear optical properties , 2008 .

[161]  D. Britton,et al.  The Crystal Structure of AgC(CN)3 , 1966 .

[162]  Yaoyu Wang,et al.  Syntheses and Crystal Structures of a Series of Zn(II)/Cd(II) Coordination Polymers Constructed from a Flexible 6,6′-Dithiodinicotinic Acid , 2011 .

[163]  Kenichi Kato,et al.  Porous coordination polymer with pyridinium cationic surface, [Zn(2)(tpa)(2)(cpb)]. , 2009, Journal of the American Chemical Society.

[164]  Lee-Fong Yau,et al.  Synthesis, crystal structures and biological evaluation of water-soluble zinc complexes of zwitterionic carboxylates , 2011 .

[165]  Yinglin Song,et al.  Two novel two-dimensional double-sheet layered manganese(II) coordination polymers: synthesis, crystal structures and third-order nonlinear optical properties , 2002 .

[166]  Xiao-Ming Chen,et al.  A New Porous 3-D Framework Constructed From Fivefold Parallel Interpenetration of 2-D (6,3) Nets: A Mixed-Valence Copper(I,II) Coordination Polymer [CuI2CuII(4,4′-bpy)2(pydc)2]·4H2O , 2003 .

[167]  Zhengbo Han,et al.  Solvothermal synthesis of two unique metal–organic frameworks: a 3-fold interpenetrating (3,4,5)-connected network and a 2-fold interpenetrating (4,5)-connected network , 2010 .

[168]  V. Blatov,et al.  Topology of 2-Periodic Coordination Networks: Toward Expert Systems in Crystal Design , 2013 .

[169]  R. Yuan,et al.  A series of novel entangled coordination frameworks with inherent features of self-threading, polyrotaxane and polycatenane , 2011 .

[170]  S. Batten,et al.  Generation of a 4-crossing (2)-catenane motif by the 2D/2D parallel interpenetration of pairs of (4,4) sheets† , 2008 .

[171]  F. Varret,et al.  Spin crossover bistability in three mutually perpendicular interpenetrated (4,4) nets. , 2000, Inorganic chemistry.

[172]  M. Du,et al.  Molecular tectonics of mixed-ligand metal-organic frameworks: positional isomeric effect, metal-directed assembly, and structural diversification. , 2007, Inorganic chemistry.

[173]  Yaoyu Wang,et al.  Synthesis, structural characterization, and properties of an entangled metal–organic framework based on a flexible dicarboxylate and a rigid N-donor , 2012 .

[174]  Huaishan Wang,et al.  Novel Zn(II) coordination polymer based on 1,2-bis(4-pyridyl)hydrazine — From two-dimensional to three-dimensional network , 2012 .

[175]  Yun-xia Che,et al.  An unusual metal–organic framework showing both rotaxane- and cantenane-like motifs , 2008 .

[176]  Nadrian C Seeman,et al.  On the chemical synthesis of new topological structures , 2011, Journal of Mathematical Chemistry.

[177]  C. Su,et al.  Two robust porous metal-organic frameworks sustained by distinct catenation: selective gas sorption and single-crystal-to-single-crystal guest exchange. , 2010, Chemistry, an Asian journal.

[178]  Z. Xue,et al.  Six new metal-organic frameworks based on polycarboxylate acids and V-shaped imidazole-based synthon: syntheses, crystal structures, and properties. , 2011, Inorganic Chemistry.

[179]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[180]  Hua Wu,et al.  pH-Controlled Assembly of Two Unusual Entangled Motifs Based on a Tridentate Ligand and Octamolybdate Clusters: 1D + 1D → 3D Poly-Pseudorotaxane and 2D → 2D → 3D Polycatenation , 2012 .