An evolutionary ancient mechanism for regulation of hemoglobin expression in vertebrate red cells.

The oxygen-transport function of hemoglobin (HB) is thought to have arisen ~500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the Hb gene clusters is linked to the widely expressed Nprl3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate Hb locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multi-globin gene locus, which contained a remote enhancer driving globin expression in erythroid cells, prior to the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current nprl3-linked hb genes in jawless and jawed vertebrates. This provides a solution for the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution.

[1]  S. Perrotta,et al.  Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia , 2019, Nature Medicine.

[2]  C. von Kalle,et al.  Gene Therapy in Patients with Transfusion‐Dependent β‐Thalassemia , 2018, The New England journal of medicine.

[3]  Martha L. Bulyk,et al.  Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch , 2018, Cell.

[4]  C. Amemiya,et al.  A genome-wide assessment of the ancestral neural crest gene regulatory network , 2018, Nature Communications.

[5]  Laura J. Norton,et al.  Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding , 2018, Nature Genetics.

[6]  D. Gell Structure and function of haemoglobins. , 2017, Blood cells, molecules & diseases.

[7]  Xiaoping Liu,et al.  Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall , 2017, Nature Communications.

[8]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[9]  G. Veres,et al.  Gene Therapy in a Patient with Sickle Cell Disease: Brief Report , 2017, The New England journal of medicine.

[10]  L. Pennacchio,et al.  Genetic dissection of the α-globin super-enhancer in vivo , 2016, Nature Genetics.

[11]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[12]  T. Burmester,et al.  Convergent evolution of hemoglobin switching in jawed and jawless vertebrates , 2016, BMC Evolutionary Biology.

[13]  Matthew C. Canver,et al.  Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin , 2016, Science.

[14]  David C. Norris,et al.  Integrated genome browser: visual analytics platform for genomics , 2015, bioRxiv.

[15]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[16]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[17]  T. Burmester,et al.  The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates. , 2014, Molecular biology and evolution.

[18]  R. Krumlauf,et al.  A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates , 2014, Nature.

[19]  Aaron R. Quinlan,et al.  Poretools: a toolkit for analyzing nanopore sequence data , 2014, bioRxiv.

[20]  T. Sauka-Spengler,et al.  A Reporter Assay in Lamprey Embryos Reveals Both Functional Conservation and Elaboration of Vertebrate Enhancers , 2014, PloS one.

[21]  Alexander S. Garruss,et al.  Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution , 2013, Nature Genetics.

[22]  R. Hardison Evolution of hemoglobin and its genes. , 2012, Cold Spring Harbor perspectives in medicine.

[23]  R. Sandstrom,et al.  Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. , 2012, Developmental biology.

[24]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[25]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[26]  S. Vinogradov,et al.  The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution , 2010, BMC Evolutionary Biology.

[27]  F. Grosveld,et al.  Fetal globin expression is regulated by Friend of Prmt1. , 2010, Blood.

[28]  A. Nederbragt,et al.  Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters , 2010, BMC Evolutionary Biology.

[29]  T. Jue,et al.  Myoglobin's old and new clothes: from molecular structure to function in living cells , 2010, Journal of Experimental Biology.

[30]  F. Hoffmann,et al.  Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates , 2010, Proceedings of the National Academy of Sciences.

[31]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[32]  D. Higgs,et al.  Long-range regulation of α globin gene expression during erythropoiesis , 2008, Current opinion in hematology.

[33]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[34]  S. Prabhakar,et al.  Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Grosveld,et al.  Functional and comparative analysis of globin loci in pufferfish and humans. , 2003, Blood.

[36]  Chuong B. Do,et al.  Access the most recent version at doi: 10.1101/gr.926603 References , 2003 .

[37]  Webb Miller,et al.  PipMaker: A World Wide Web Server for Genomic Sequence Alignments , 2003, Current protocols in bioinformatics.

[38]  K. Katoh,et al.  Cyclostome Hemoglobins Are Possibly Paralogous to Gnathostome Hemoglobins , 2002, Journal of Molecular Evolution.

[39]  T. Burmester,et al.  Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. , 2002, Molecular biology and evolution.

[40]  Webb Miller,et al.  Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the α globin cluster , 2001 .

[41]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[42]  Lior Pachter,et al.  VISTA : visualizing global DNA sequence alignments of arbitrary length , 2000, Bioinform..

[43]  J. Stamler,et al.  Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’ , 1999, Nature.

[44]  P. R. Gardner,et al.  Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[46]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[47]  R. Hardison,et al.  A brief history of hemoglobins: plant, animal, protist, and bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. Grosveld,et al.  A dominant chromatin‐opening activity in 5′ hypersensitive site 3 of the human beta‐globin locus control region. , 1996, The EMBO journal.

[49]  G. Lanfranchi,et al.  Ancestral hemoglobin switching in lampreys. , 1994, Developmental biology.

[50]  G. Lanfranchi,et al.  Different globin messenger RNAs are present before and after the metamorphosis in Lampetra zanandreai. , 1991, Developmental biology.

[51]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[52]  R. Hardison,et al.  Evolution of hemoglobin loci and their regulatory elements. , 2018, Blood cells, molecules & diseases.

[53]  Luc Moens,et al.  An evolutionary tree for invertebrate globin sequences , 2005, Journal of Molecular Evolution.

[54]  K. Kawakami Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. , 2004, Methods in cell biology.