Inhomogeneous states with checkerboard order in the t-J model

We study inhomogeneous states in the $t\text{\ensuremath{-}}J$ model using an unrestricted Gutzwiller approximation. We find that $pa\ifmmode\times\else\texttimes\fi{}pa$ checkerboard order, where $p$ is a doping dependent number, emerges from Fermi surface instabilities of both the staggered flux phase and the Fermi liquid state with realistic band parameters. In both cases, the checkerboard order develops at wave vectors $(\ifmmode\pm\else\textpm\fi{}2\ensuremath{\pi}∕pa,0)$, $(0,\ifmmode\pm\else\textpm\fi{}2\ensuremath{\pi}∕pa)$ that are tied to the peaks of the wave-vector dependent susceptibility, and is of the Lomer-Rice-Scott type. The properties of such periodic, inhomogeneous states are discussed in connection to the checkerboard patterns observed by scanning tunneling microscopy in underdoped cuprates.

[1]  H. Eisaki,et al.  Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8 + delta). , 2005, Physical review letters.

[2]  D. Poilblanc Stability of inhomogeneous superstructures from renormalized mean-field theory of the t-J model , 2005, cond-mat/0503249.

[3]  H. Takagi,et al.  Nodal Quasiparticles and Antinodal Charge Ordering in Ca2-xNaxCuO2Cl2 , 2005, Science.

[4]  S. White,et al.  Checkerboard patterns in the t-J model , 2004, cond-mat/0408249.

[5]  Z. Tes̆anović Charge modulation, spin response, and dual Hofstadter butterfly in high-Tc cuprates. , 2004, Physical review letters.

[6]  A. Yazdani,et al.  Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ , 2004, Science.

[7]  Shou-Cheng Zhang,et al.  Pair density wave in the pseudogap state of high temperature superconductors. , 2004, Physical review letters.

[8]  Ziqiang Wang,et al.  Pseudogap, competing order, and the coexistence of staggered flux and d -wave pairing in high-temperature superconductors , 2004, cond-mat/0401436.

[9]  M. Vojta Superconducting charge-ordered states in cuprates , 2002, cond-mat/0204284.

[10]  Berkeley,et al.  A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ , 2002, Science.

[11]  H. Ding,et al.  Inhomogeneous d-wave superconducting state of a doped Mott insulator , 2001, cond-mat/0107004.

[12]  M. Vojta,et al.  Competing orders and quantum criticality in doped antiferromagnets , 2000, cond-mat/0003163.

[13]  H. Ding,et al.  Collective modes and the superconducting-state spectral function of Bi2Sr2CaCu2O8 , 1997, cond-mat/9712116.

[14]  M. Randeria,et al.  Destruction of the Fermi surface in underdoped high-Tc superconductors , 1997, Nature.

[15]  C. H. Park,et al.  Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ , 1996, Science.

[16]  M. Randeria,et al.  Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors , 1996, Nature.

[17]  Lubensky,et al.  Instabilities of the Fermi-liquid and staggered flux phases in the large-N t-J model. , 1991, Physical review. B, Condensed matter.

[18]  Wang,et al.  Flux-density wave and superconducting instability of the staggered-flux phase. , 1990, Physical review. B, Condensed matter.

[19]  Grilli,et al.  Fermi-liquid parameters and superconducting instabilities of a generalized t-J model. , 1990, Physical review letters.

[20]  C. Gros,et al.  A renormalised Hamiltonian approach to a resonant valence bond wavefunction , 1988 .

[21]  Kotliar,et al.  Resonating valence bonds and d-wave superconductivity. , 1988, Physical review. B, Condensed matter.

[22]  I. Affleck,et al.  Large-n limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. , 1988, Physical review. B, Condensed matter.

[23]  T. M. Rice,et al.  New Mechanism for a Charge-Density-Wave Instability , 1975 .

[24]  W. Lomer Electronic Structure of Chromium Group Metals , 1962 .