Query Order

We study the effect of query order on computational power and show that ${\rm P}^{{\rm BH}_j[1]:{\rm BH}_k[1]}$\allowbreak---the languages computable via a polynomial-time machine given one query to the $j$th level of the boolean hierarchy followed by one query to the $k$th level of the boolean hierarchy---equals ${\rm R}_{{j+2k-1}{\scriptsize\mbox{-tt}}}^{p}({\rm NP})$ if $j$ is even and $k$ is odd and equals ${\rm R}_{{j+2k}{\scriptsize\mbox{-tt}}}^{p}({\rm NP})$ otherwise. Thus unless the polynomial hierarchy collapses it holds that, for each $1\leq j \leq k$, ${\rm P}^{{\rm BH}_j[1]:{\rm BH}_k[1]} = {\rm P}^{{\rm BH}_k[1]:{\rm BH}_j [1]} \iff (j=k) \lor (j\mbox{ is even}\, \land k=j+1)$. We extend our analysis to apply to more general query classes.

[1]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[2]  Jin-Yi Cai Probability One Separation of the Boolean Hierarchy , 1987, STACS.

[3]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[4]  Paul Young,et al.  Strong Separations for the Boolean Hierarchy over RP , 1990, Int. J. Found. Comput. Sci..

[5]  Edith Hemaspaandra,et al.  An Introduction to Query Order , 1997, Bull. EATCS.

[6]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[7]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..

[8]  Edith Hemaspaandra,et al.  Translating Equality Downwards , 1999, ArXiv.

[9]  Manindra Agrawal,et al.  Modulo Information from Nonadaptive Queries to NP , 1996, Electron. Colloquium Comput. Complex..

[10]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[11]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[12]  Edith Hemaspaandra,et al.  Query Order in the Polynomial Hierarchy , 1997, FCT.

[13]  Thomas Schwentick,et al.  The Power of the Middle Bit of a #P Function , 1995, J. Comput. Syst. Sci..

[14]  Richard Chang,et al.  On the Structure of NP Computations under Boolean Operators , 1991 .

[15]  Edith Hemaspaandra,et al.  What's up with downward collapse: using the easy-hard technique to link Boolean and polynomial hierarchy collapses , 1998, SIGA.

[16]  Richard Chang,et al.  Commutative queries , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[17]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[18]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[19]  Lance Fortnow,et al.  Two Queries , 1999, J. Comput. Syst. Sci..

[20]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[21]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[22]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[23]  Lane A. Hemaspaandra,et al.  Query Order and Self-Specifying Machines , 1995 .

[24]  Jörg Rothe,et al.  Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets , 1997, SIAM J. Comput..

[25]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[26]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[27]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Ulrich Hertrampf Acceptance by transformation monoids (with an application to local self reductions) , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.