Edge detection using a new definition of entropy

The paper describes a possible model of the human perceptive process. In this paper the relation between the entropy of an image domain and the entropy of its subdomains is explored as a uniformity predicate. Such entropy is obtained from the analysis of the image histogram associating a Gaussian distribution to the maximum frequency of grey levels. With the aim of implementing the model, we have introduced a well known technique of problem solving. The most important roles of our model are played by the evaluation function (EF) and the control strategy. So the EF is related to the ratio between the entropy of one region or zone of the picture and the entropy of the entire picture. The control strategy determines the optimal path in the quadtree so that the nodes of the optimal path have minimal entropy. The paper shows some comparisons between the method and classical edge detection techniques.

[1]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[3]  S. Pal,et al.  Object-background segmentation using new definitions of entropy , 1989 .

[4]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[5]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Anil K. Jain,et al.  Segmentation of Document Images , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Carlo Alberto Marzi,et al.  PANEL SUMMARY ALLOCATION OF ATTENTION IN VISION , 1994 .

[11]  N. Pal,et al.  On object background classification , 1992 .

[12]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[14]  Anil K. Jain,et al.  Segmentation of document images , 1989, SMC.

[15]  Michele Nappi,et al.  A.I. Based Image Segmentation , 1995, ICIAP.

[16]  William E. Higgins,et al.  Edge detection using two-dimensional local structure information , 1994, Pattern Recognit..

[17]  Alfred M. Bruckstein,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[18]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Azriel Rosenfeld,et al.  Some experiments on variable thresholding , 1979, Pattern Recognit..

[20]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[21]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .