On finite element approximation in theL∞-norm of variational inequalities

SummaryWe are interested in the approximation in theL∞-norm of variational inequalities with non-linear operators and somewhat irregular obstacles. We show that the order of convergence will be the same as that of the equation associated with the non-linear operator if the discrete maximum principle is verified.

[1]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[2]  A. Friedman,et al.  Regularity of the solution of the quasi variational inequality for the impulse control problem, II , 1978 .

[3]  Franco Brezzi,et al.  Convergence of the discrete free boundaries for finite element approximations , 1983 .

[4]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[5]  F. Scarpini Some nonlinear complementarity systems algorithms and applications to unilateral boundary-value problems , 1980 .

[6]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[7]  Rolf Rannacher,et al.  Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems , 1978 .

[8]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[9]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[10]  J. Hess,et al.  Higher order numerical solution of the integral equation for the two-dimensional neumann problem , 1973 .

[11]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[12]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[13]  Philippe Cortey-Dumont Sur les inéquations variationnelles à opérateur non coercif , 1985 .

[14]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[15]  C. Baiocchi,et al.  Estimations d’Erreur dans L ∞ pour les Inequations a Obstacle , 1977 .

[16]  Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality , 1977 .

[17]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .

[18]  Stefano Finzi Vita $L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle , 1982 .

[19]  W. Rheinboldt On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows☆ , 1970 .

[20]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[21]  I. Babuška,et al.  Mathematical problems of computational decisions in the finite element method. Technical report TR-426 , 1975 .