Multimaterial photonic crystal fibers

One of the main advantages of photonic crystal fibers (PCFs) is their ability to host novel functional materials in the airholes of the cladding. Here, we demonstrate a unique post-processing method which allows the integration of materials with significantly different thermo-mechanical properties inside the voids of silica PCF. We first present the material properties of silica, As2Se3 and polydimethylsiloxane (PDMS) in terms of their refractive indices and viscosity profile. The latter suggests that the proposed materials are not suitable for direct fiber drawing and thus we present the development of a multi-material As2Se3/PDMS/Silica PCF based on a solution-processed and pressure-assisting method. The integration of both As2Se3 chalcogenide glass films and PDMS was made in ambient conditions using a costeffective approach. The deposition of the high-index chalcogenide glass films revealed distinct resonances in the visible and near-infrared region while the high thermo-optic coefficient of PDMS provides the ability to thermally control the intensity of the antiresonant bands. The proposed method opens new directions towards multimaterial silica-based PCFs for novel tunable devices and sensors.

[1]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[2]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[3]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[4]  Christos Markos,et al.  Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers , 2016, Scientific Reports.

[5]  Michael H Frosz,et al.  Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. , 2017, Optics express.

[6]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[7]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[8]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[9]  Lothar Wondraczek,et al.  Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers. , 2011, Optics letters.

[10]  Christos Markos,et al.  Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms , 2014, Scientific Reports.

[11]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[12]  Steven G. Johnson,et al.  Structured spheres generated by an in-fibre fluid instability , 2012, Nature.

[13]  Christos Markos,et al.  Broadband Guidance in a Hollow-Core Photonic Crystal Fiber With Polymer-Filled Cladding , 2013, IEEE Photonics Technology Letters.

[14]  Arismar Cerqueira S,et al.  Hybrid photonic crystal fiber. , 2006, Optics express.

[15]  F. Schneider,et al.  Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS , 2009 .

[16]  Ayman F. Abouraddy,et al.  Metal–insulator–semiconductor optoelectronic fibres , 2004, Nature.

[17]  R. Dettmer,et al.  A neat idea [photonic crystal fibre] , 2001 .

[18]  Christos Markos,et al.  Guiding and birefringent properties of a hybrid PDMS/silica photonic crystal fiber , 2011, LASE.

[19]  Christos Markos,et al.  Chalcogenide glass layers in silica photonic crystal fibers. , 2012, Optics express.

[20]  Jesper Lægsgaard,et al.  Hollow-core fibers for high power pulse delivery. , 2016, Optics express.

[21]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[22]  Christos Markos,et al.  Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. , 2017, Optics letters.

[23]  Craig B. Arnold,et al.  A review on solution processing of chalcogenide glasses for optical components , 2013 .

[24]  E. Dianov,et al.  Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. , 2011, Optics express.

[25]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[26]  R. J. Weiblen,et al.  Negative curvature fibers , 2017 .

[27]  Christos Markos,et al.  Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber , 2012 .

[28]  B.J. Eggleton,et al.  Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings , 2000, IEEE Photonics Technology Letters.

[29]  Christos Markos,et al.  Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing , 2017, IEEE Photonics Technology Letters.

[30]  Christos Markos,et al.  Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. , 2017, Optics letters.

[31]  Alessandro Massaro,et al.  Photonic Crystals - Introduction, Applications and Theory , 2012 .