Protein labeling with FlAsH and ReAsH.

[1]  K. Thorn,et al.  A novel method of affinity‐purifying proteins using a bis‐arsenical fluorescein , 2008, Protein science : a publication of the Protein Society.

[2]  Brent R. Martin,et al.  Mammalian cell–based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity , 2005, Nature Biotechnology.

[3]  R Y Tsien,et al.  Cytochrome c is released in a single step during apoptosis , 2005, Cell Death and Differentiation.

[4]  L. Gierasch,et al.  Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus. , 2005, Biochemistry.

[5]  M. Sheetz,et al.  In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag , 2005, Nature Methods.

[6]  K. Nagashima,et al.  Dynamic Fluorescent Imaging of Human Immunodeficiency Virus Type 1 Gag in Live Cells by Biarsenical Labeling , 2005, Journal of Virology.

[7]  David D. Thomas,et al.  Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy. , 2005, Biochemistry.

[8]  Baowei Chen,et al.  Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase. , 2005, Biochemistry.

[9]  Mark H Ellisman,et al.  A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells , 2005, Nature Methods.

[10]  S. Cavagnero,et al.  Painting protein misfolding in the cell in real time with an atomic-scale brush. , 2005, Trends in biotechnology.

[11]  R. Tsien Building and breeding molecules to spy on cells and tumors , 2005, FEBS letters.

[12]  S. Jakobs,et al.  Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. , 2004, Molecular biology of the cell.

[13]  P. Selvin,et al.  Nanometre localization of single ReAsH molecules , 2004, Journal of microscopy.

[14]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[15]  A. Sartiel,et al.  Detection of tetracysteine‐tagged proteins using a biarsenical fluorescein derivative through dry microplate array gel electrophoresis , 2004, Electrophoresis.

[16]  M. Maeda,et al.  A New Protein Conformation Indicator Based on Biarsenical Fluorescein with an Extended Benzoic Acid Moiety , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[17]  Zoya Ignatova,et al.  Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Ruthel,et al.  In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Roger Y Tsien,et al.  Genetically targeted chromophore-assisted light inactivation , 2003, Nature Biotechnology.

[20]  Mason R. Mackey,et al.  Tetracysteine Genetic Tags Complexed with Biarsenical Ligands as a Tool for Investigating Gap Junction Structure and Dynamics , 2003, Cell communication & adhesion.

[21]  G. Davis,et al.  Transgenically Encoded Protein Photoinactivation (FlAsH-FALI) Acute Inactivation of Synaptotagmin I , 2002, Neuron.

[22]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[23]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[24]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.

[25]  Catherine Proenza,et al.  The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins , 2001, Pflügers Archiv.

[26]  Y. Umezawa,et al.  Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells. , 2001, Analytical chemistry.

[27]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[28]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[29]  R. Tsien,et al.  Fluorescent labeling of recombinant proteins in living cells with FlAsH. , 2000, Methods in enzymology.